Study of Process Intensification for Post-combustion Carbon Capture Through Modelling and Simulation

Meihong Wang

School of Engineering,
Faculty of Science and Engineering
University of Hull
Process and Energy Systems Engineering Group at University of Hull, UK

- Technical tools: process modeling, simulation, control and optimization
- Application areas: conventional power generation, CO_2 capture, CO_2 transport, energy storage, biomass steam gasification
- Currently 3 Research staff & 9 PhD students
- For more details, please refer to http://www2.hull.ac.uk/science/engineering/our%20staff/academic/meihong%20wang.aspx
Outline

• Background and Motivations for the Research
• Modelling of Post-combustion Carbon Capture (PCC) with Chemical Absorption
• Integration between Coal-fired Power Plant and PCC
• Why is Process Intensifications necessary for PCC?
 o Key Findings from Biliyok et al. (2012), Lawal et al. (2012) and Lawal et al. (2010)
 o Introduction to Process Intensification
 o Current status of PI for PCC worldwide
• Steady state modelling of Intensified Absorber
 o Methodology
 o Correlation Sets used
 o Model Validation & Process Analysis
1. Motivations for the Research

1.1 Energy Demand

- Energy demand expected to rise with increasing population and the emergence of the Brazil, Russia, India, China and South Africa (BRICS) countries.
- Power generation is the single largest contributor of anthropogenic CO$_2$ emissions.
- Coal releases twice as much CO$_2$ as natural gas; but offers economic advantages.
1. Motivations for the Research

1.1 Energy Demand

- **UK electricity generation by fuel source** (DECC, 2010)
 - In 2009, about 32% of UK electricity generation is from coal-fired power station
 - This is projected to fall to 22% by 2020.
 - NGCC power plant has a share of 45% in 2009, which will fall to 29% in 2020.
1. Motivations for the Research

1.1 Energy Demand

- For UK National Grid status http://www.gridwatch.templar.co.uk/
 - On 12/11/2014, 35% electricity generated from Coal & 37.5% electricity generated from Natural Gas.
1. Motivations for the Research

1.2 CO$_2$ Emissions

- Carbon dioxide is the main greenhouse gas.
- Global concentration of CO$_2$ in the atmosphere was about 280 parts per million by volume (ppmv) in around 1860 (pre-industrialisation levels).
- In 1958, it was approximately 316 ppmv.
- It is approximately 369 ppmv in 2005 (UNEP, 2005).
- CO$_2$ concentration is around 400 ppm and is increasing by 2-3 ppm every year.
- Atmospheric CO$_2$ must remain 450 ppm to ensure that global warming stays below 2$^\circ$C.
1. Motivations for the Research

1.2 CO_2 Emissions

- Main sources
 - Fuel combustion activities
 - Industrial processes
 - Natural gas processing

- Sectors
 - Power generation (coal, natural gas)
 - Transportation
 - Industrial (Manufacturing)

- Types of Emitters
 - Large emitters of CO_2 (emitting more than 0.1 MtCO_2 per year)
 - Small emitters of CO_2 (emitting less than 0.1 MtCO_2 per year)
1. Motivations for the Research

1.2 CO₂ Emissions

- UK CO₂ Emissions clusters (DECC, 2010)

Department of Energy and Climate Change (DECC), (2010), *Updated energy and emissions projections*, UK Government, Report number URN10D/510
1. Motivations for the Research

1.3 Climate Change

- Average global temperature increased by 0.74°C in the 20th century.
- Sea levels have risen by 17cm due to thermal expansion of the ocean and melting of ice.
- Dramatic increase in the frequency, intensity and duration of floods, droughts and heat waves.
- Global warming potential (IPCC, 2007)
1. Motivations for the Research

1.4 CO₂ Reduction Target

- IPCC recommends that CO₂ emissions be cut by 50% by 2050 compared to 1990 levels.
- Trajectory for target CO₂ emissions reduction in the UK (DECC, 2010)
 - The first target requires UK to cut its carbon emissions to achieve reduction of 34% below 1990 levels by year 2020.
 - (a) Reduction of 23% for the period 2008-2012;
 - (b) 29% for period 2013-2017
 - (c) to 34% for period to 2018-2022
2. Modelling of PCC using Solvents

2.1 CO$_2$ Separation Technologies

- PCC: Process Options for CO$_2$ Capture (Rao and Rubin, 2002)
2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process

- Post-combustion Carbon Capture (PCC): Chemical Absorption

2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process

- Model Complexity

2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process

- Rate-based dynamic modelling based on Two-film Theory

Material Balance: \[
\frac{dM_i}{dt} = -\frac{1}{A} \frac{\partial F_i}{\partial y} + N_i \cdot MW_i \cdot \dot{S} \cdot \dot{\omega}
\]

Energy Balance: \[
\frac{dU}{dt} = \frac{1}{A} \frac{\partial F_H}{\partial y} + \dot{S} \dot{\omega} \cdot (H_{\text{cond}} + H_{\text{conv}})
\]
2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process

- Absorber and Stripper model in gPROMS
2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process

- Chemical Equilibrium is defined by ElecNRTL Activity Coefficient Model in Aspen Properties®.
- Maxwell-Stefan Formulation used to determine fluxes across films.
- Vapour diffusivity calculated by the Fuller method.
- Liquid diffusivity determined by a method provided by Veersteeg and van Swaaij.
- Onda correlation used to determine the mass transfer coefficients in the films and the wetted area.
- Heat of Absorption determined via formulations derived from tests at the University of Texas in Austin.
2. Modelling of PCC using Solvents

2.3 Pilot plants for CO\textsubscript{2} Capture with Chemical Absorption

- **1 Ton CO\textsubscript{2} / day**
 - RWE nPower, Didcot CTF

- **~3Ton CO\textsubscript{2} / day**
 - Univ. Texas at Austin, SRP Pilot Plant

- **4Ton CO\textsubscript{2} / day**
 - SaskPower Boundary Dam
2. Modelling of PCC using Solvents

2.3 Pilot plants for CO$_2$ Capture with Chemical Absorption

- The biggest test facility in the UK – Ferrybridge (100 Ton CO$_2$ / day) – commissioned on 30/11/2012.
- The project – worth more than £20million
- A partnership between industry partners Scottish and Southern Energy (SSE), Doosan Power Systems and Vattenfall
- Supported by DECC, the Technology Strategy Board (TSB) and Northern Way

A 500MWe coal-fired subcritical power plant releases over 8000 tonne CO$_2$/day
2. Modelling of PCC using Solvents

2.4 Model Validation at pilot scale

- Higher L/G ratios result in higher CO₂ removal rates.
- Typical operation would be around 90% CO₂ capture

<table>
<thead>
<tr>
<th></th>
<th>Case</th>
<th>L/G ratio (kg/kg)</th>
<th>CO₂ removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state validation</td>
<td>32</td>
<td>6.6</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>3.4</td>
<td>69</td>
</tr>
<tr>
<td>Dynamic validation</td>
<td>25/26</td>
<td>8.5</td>
<td>93</td>
</tr>
</tbody>
</table>

2. Modelling of PCC using Solvents

2.4 Model Validation at pilot scale

- Case 32 Regenerator Temperature Profile

- Case 32 Absorber Temperature Profile

- Case 32 Regenerator Temperature Profile

- Case 32 Absorber Temperature Profile
2. Modelling of PCC using Solvents

2.4 Model Validation at pilot scale

- Dynamic Validation — *flowsheet for conventional process*

a Lawal, A. (2010), *Study of a Post-Combustion CO\textsubscript{2} Capture Plant for Coal-Fired Power Plant through Modelling and Simulation*, PhD thesis, Cranfield University, Bedford, UK.
2. Modelling of PCC using Solvents

2.4 Model Validation at pilot scale

- Dynamic Validation - *Process Inputs and Disturbances*

- Slow decrease in lean solvent flow rate into the absorber.
- Fluctuating CO\(_2\) Composition of flue gas into the absorber.
- Increase in the temperature of flue gas into the absorber.
2. Modelling of PCO using Solvents

2.4 Model Validation at pilot scale

- **Dynamic Validation** - Comparison between Plant Responses and Model Prediction

Logged pilot plant measurement

Dynamic model predictions
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

- Carry out preliminary design considerations and calculations
- Estimate required sizes of important equipment based on relevant flow rates
- Run case study simulations to select design and operating variables
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

Absorber and Regenerator Diameters

Required diameter for Regenerator = 8.39m
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

Absorber and Regenerator Height

- The volume of packing required for mass transfer is estimated using methods suggested by [3].

\[
\text{Volume of packing required} = \frac{\text{Surface Area of packing required}}{\text{Specific area of packing}}
\]

\[
\text{Surface Area of packing required} = \frac{\text{molar flow of } \text{CO}_2}{\text{mass transfer flux} \times \text{wetted area ratio}}
\]

\[
\text{mass transfer flux} = \text{overall mass transfer coefficient} \times \text{driving force (}\Delta C\text{)}
\]

\[
\text{overall mass transfer coefficient} = \frac{1}{\left(\frac{1}{K_G}\right) + \left(\frac{1}{mEK_L}\right)}
\]

3. Integration between Coal-fired subcritical power plant and PCC Plant

3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

Summary of preliminary design parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design flue gas mass flow rate (kg/s)</td>
<td>600</td>
</tr>
<tr>
<td>CO$_2$ capture level (%)</td>
<td>90</td>
</tr>
<tr>
<td>Absorber column number</td>
<td>2</td>
</tr>
<tr>
<td>Absorber diameter (m)</td>
<td>9</td>
</tr>
<tr>
<td>Regenerator column number</td>
<td>1</td>
</tr>
<tr>
<td>Regenerator column diameter (m)</td>
<td>9</td>
</tr>
<tr>
<td>Absorber operating pressure (10^5 Pa)</td>
<td>1.01</td>
</tr>
<tr>
<td>Regenerator operating pressure (10^5 Pa)</td>
<td>1.62</td>
</tr>
<tr>
<td>Lean solvent mass fraction (MEA)</td>
<td>0.3048</td>
</tr>
<tr>
<td>Lean solvent CO$_2$ loading (mol CO$_2$/mol MEA)</td>
<td>0.29</td>
</tr>
</tbody>
</table>
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.2 Integration between Power Plant & PCC Plant

![Diagram showing integration between power plant and PCC plant]

- Flue gas from power plant
- Direct Contact Cooler: 40 – 50°C
- Component Adjuster
- Blower
- Flow Splitter to absorber columns
- Flue gas to Capture plant

- SO₂, particulates
- N₂ (+ inerts), CO₂ and H₂O
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.2 Integration between Power Plant & PCC Plant

Stripping vapour stream to Regenerator

Liquid MEA stream from Regenerator

Lean MEA stream to Absorber

Condensate to low pressure feed heater

Amine Solvent Stream

Steam

Condensate/Water

Instrument Line
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.3 Flowsheet for Power Plant with PCC Plant
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.4 Thermal Performance Analysis

- Net power output drops to 453MWe
- Power plant efficiency drops 6%
- 42% of steam is drawn off at the IP/LP crossover for solvent regeneration

Note: CO$_2$ compression and CO$_2$ capture plant auxiliary electricity requirements were not considered
3. Integration between Coal-fired subcritical power plant and PCC Plant

3.5 Dynamic Analysis

Dynamic case study: The response of the integrated plant with a step reduction in target power output.

Identified possible interaction between control loops

Response of CO$_2$ capture plant is slower than that of the power plant
4. Why is Process Intensification necessary for PCC?

4.1 Key Findings from Biliyok et al. (2012)

- Publication in *International Journal of Greenhouse Gas Control* on Dynamic Modelling, Validation and Analysis of PCC (with MEA) Process
4. Why is Process Intensification necessary for PCC?
4.1 Key Findings from Biliyok et al. (2012)

- In PCC using MEA process
 - Development of dynamic models for PCC using MEA (considering rate-based mass transfer and reactions assumed to be at equilibrium)
 - In addition to steady state validation, dynamic model validation performed (in collaboration with University of Texas at Austin).
 - Through Case Study (i.e. model-based process analysis), it provides evidence that **PCC process is mass transfer limited** (while the reaction between MEA and CO_2 is fast enough).
 - Further analysis indicates the slow mass transfer is caused by **the flow pattern** inside packed column (i.e. laminar flow).
4. Why is Process Intensification necessary for PCC?

4.2 Key Findings from Lawal et al. (2012)

- Publication in *Fuel* on *Integration of full scale Coal-fired subcritical Power Plant with PCC (using MEA) Process*

Fuel

Journal homepage: www.elsevier.com/locate/fuel

Demonstrating full-scale post-combustion CO₂ capture for coal-fired power plants through dynamic modelling and simulation

Adekola Lawal\(^{a}\), Meihong Wang\(^{a,*}\), Peter Stephenson\(^{b}\), Okwose Obi\(^{a}\)

\(^{a}\) Process Systems Engineering Group, School of Engineering, Cranfield University, Beds MK43 0AL, UK

\(^{b}\) RWE npower, Windmill Hill Business Park, Swindon SN5 6PB, UK
4. Why is Process Intensification necessary for PCC?

4.2 Key Findings from Lawal et al. (2012)

- Study of 500 MWe subcritical coal-fired power plant integrated with PCC using MEA process through Dynamic Modelling and Simulation
 - The main challenge of PCC for 500 MWe subcritical coal-fired power plant (such as Didcot A) is its large flue gas flowrate (around 600 kg/s).
 - Study of scale-up for PCC plant to match the requirement of full scale coal-fired power plant (to capture over 8,000 tons CO₂/day).
 - Size of Packed Columns required is huge, which translates to high capital cost.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design flue gas mass flow rate (kg/s)</td>
<td>600</td>
</tr>
<tr>
<td>CO₂ mass fraction in flue gas</td>
<td>0.21</td>
</tr>
<tr>
<td>CO₂ capture level (%)</td>
<td>90</td>
</tr>
<tr>
<td>Absorber Column Number</td>
<td>2</td>
</tr>
<tr>
<td>Absorber Diameter (m)</td>
<td>9</td>
</tr>
<tr>
<td>Absorber Height (m)</td>
<td>17</td>
</tr>
<tr>
<td>Regenerator Column Number</td>
<td>1</td>
</tr>
<tr>
<td>Regenerator Column Diameter (m)</td>
<td>9</td>
</tr>
<tr>
<td>Absorber operating pressure (10⁵ Pa)</td>
<td>1.01</td>
</tr>
<tr>
<td>Regenerator operating pressure (10⁵ Pa)</td>
<td>1.62</td>
</tr>
<tr>
<td>Lean solvent mass fraction (MEA)</td>
<td>0.3048</td>
</tr>
<tr>
<td>Lean solvent CO₂ loading (mol CO₂/mol MEA)</td>
<td>0.29</td>
</tr>
</tbody>
</table>
4. Why is Process Intensification necessary for PCC?

4.3 Key Findings from Lawal et al. (2010)

- Publication in *Fuel* on *Dynamic Modelling and Analysis of pilot scale PCC (using MEA) Process*

Dynamic modelling and analysis of post-combustion CO₂ chemical absorption process for coal-fired power plants

A. Lawal, M. Wang, P. Stephenson, G. Koumpouras, H. Yeung

Process Systems Engineering Group, School of Engineering, Cranfield University, Bedfordshire MK43 0AL, UK

RWE npower, Windmill Park, Swindon SN5 6PB, UK

Process Systems Enterprise Ltd., Hammersmith W6 7HA, UK
4. Why is Process Intensification necessary for PCC?

4.3 Key Findings from Lawal et al. (2010)

- Study of Dynamics and Operation of PCC using MEA process at Pilot Scale through dynamic modelling and simulation
 - The **dynamics of the PCC using MEA process is very slow** (time constant around 57 minutes).
 - The main reason is **high L/G ratio required** (generally around 6.0 mass/mass for flue gas from typical coal-fired power plants) to achieve the capture level
 - This large flowrate of MEA (at 30.48 wt%) contributes to **high energy consumption**.
 - This also poses **considerable challenges in process operation** when integrated with power plants.
4. Why is Process Intensification necessary for PCC?

4.4 Introduction to Process Intensification (PI)

- Process Intensification (PI) is a strategy for making major reductions in the volume of processing plant without compromising its production rate.
- Rotating packed bed (RPB) is one of the PI technologies proposed by Prof Ramshaw in 1979.
- RPB takes advantages of centrifugal forces to generate high gravity and consequently boost the mass transfer performance.

Rotating Packed Bed used for REACTIVE STRIPPING – 40 times smaller plant (Dow Chemical, HOCl process)
4. Why is Process Intensification necessary for PCC?

4.4 Introduction to Process Intensification (PI)

Schematic diagram of a rotating packed bed setup and corresponding segmentation (Llerena-Chavez and Larachi, 2009)
4. Why is Process Intensification necessary for PCC?

4.5 Current status of PI for PCC worldwide

- Experimental study on intensified Absorber
 - Newcastle
 - Carried out experimental study of intensified absorber using MEA solvent as absorbent.
 - The experimental rig has been upgraded (Lee et al., 2012)
 - Beijing University of Chemical Technology (BUCT)
 - Liquid side volumetric mass transfer coefficient ($k_L\alpha$) in RPB shows at least one order of magnitude improvement than conventional packed column (Zhang et al., 2011)
 - India
 - Compared RPB with split packing RPB (Rajan et al., 2006; Agarwal et al., 2010; Reddy et al., 2011).
 - Improvement in both gas and liquid phase mass transfer
 - Taiwan
 - Used mixed alkanolamines solvent which results in improved CO$_2$ capture level
 - Counter-current flow arrangement and cross flow arrangement
4. Why is Process Intensification necessary for PCC?

4.5 Current status of PI for PCC worldwide

- Study on intensified Absorber through modelling
 - Taiwan
 - Cheng and Tan (2011) used continuous stirred tank model in series to model/simulate intensified absorber.
 - University of Hull
 - Aspen Plus and visual FORTRAN used to model and simulate intensified absorber (Joel et al., 2014a,b)
 - Model validation with two sets of mass transfer correlations (Joel et al., 2014b)
 - Compared conventional and intensified absorber, and found a volume reduction factor of 12 times (Joel et al., 2014b)
 - BUCT
 - End effect problem along the radial direction (Yi et al., 2009)
 - Mechanism of gas–liquid mass transfer with reactions in RPB at higher gravity level was illustrated (Yi et al., 2009)
4. Why is Process Intensification necessary for PCC?

4.5 Current status of PI for PCC worldwide

- Experimental and Modelling study on intensified Stripper
 - Newcastle
 - Jassim et al. (2007) reported RPB stripper for desorption runs for 30 wt%, 54 wt% and 60 wt% MEA solution
 - Reduction factor in stripper height of 8.4 and stripper diameter of 11.3 (Jassim et al., 2007)
 - Taiwan
 - Cheng et al. (2013) setup was an improvement to what was reported in Jassim et al. (2007)
 - They introduced a back pressure regulator in order to operate the regenerator at higher temperature and pressure (Cheng et al., 2013)
 - In both studies, reboiler is not intensified
4. Why is Process Intensification necessary for PCC?

4.5 Current status of PI for PCC worldwide

- **Summary**
 - There are good number of studies on intensified Absorber through experiments and/or modelling
 - Few studies on pressure drop across column validated with experimental data
 - No experimental data on electricity consumption for driving the motor.
 - There are very limited studies on intensified Stripper/Regenerator through experiments and/or modelling
 - The size of intensified stripper reduced significantly, but the reboiler is still huge.
 - There is merely no study on intensified heat exchangers for PCC application
 - There is no study of whole intensified PCC process
 - There is no pilot plant for whole intensified PCC process
 - There is no study of the whole intensified carbon capture process through experiments or modelling
5. Steady state modelling of Intensification Absorber

5.1 Methodology

- **Aspen Plus® Rate Based Model**
- Writing the user defined correlations in Visual FORTRAN Compiler
- Linking Visual FORTRAN compiler with Aspen Plus model
- Running the simulation
- Model Validation
- Process Analysis
5. Steady state modelling of Intensification Absorber

5.2 Correlation Sets used

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Set 1</th>
<th>Set 2</th>
</tr>
</thead>
</table>
5. Steady state modelling of Intensification Absorber

5.3 Model Validation

Input process conditions for Run 1 to Run 4 (Jassim et al., 2007)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
<th>Run 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor speed (RPM)</td>
<td>600</td>
<td>1000</td>
<td>600</td>
<td>1000</td>
</tr>
<tr>
<td>Lean MEA temperature (°C)</td>
<td>39.6</td>
<td>40.1</td>
<td>41</td>
<td>40.2</td>
</tr>
<tr>
<td>Lean MEA pressure (atm.)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flue gas flow rate (kmol/hr)</td>
<td>2.87</td>
<td>2.87</td>
<td>2.87</td>
<td>2.87</td>
</tr>
<tr>
<td>CO₂ composition in Flue gas (vol %)</td>
<td>4.71</td>
<td>4.48</td>
<td>4.40</td>
<td>4.29</td>
</tr>
<tr>
<td>Lean-MEA flow rate (kg/s)</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>Lean-MEA composition (wt %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>40.91</td>
<td>40.91</td>
<td>22.32</td>
<td>23.41</td>
</tr>
<tr>
<td>CO₂</td>
<td>3.09</td>
<td>3.09</td>
<td>2.68</td>
<td>2.59</td>
</tr>
<tr>
<td>MEA</td>
<td>56.00</td>
<td>56.00</td>
<td>75.00</td>
<td>74.00</td>
</tr>
</tbody>
</table>
5. Steady state modelling of Intensification Absorber

5.3 Model Validation

Simulation results with 2 different sets of correlations compared to the experimental data for Run 1 and Run 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Run 1</th>
<th>Run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expt. Set 1 Error 1 Set 2 Error 2</td>
<td>Expt. Set 1 Error 1 Set 2 Error 2</td>
</tr>
<tr>
<td>CO₂ loading of Lean MEA, (mol CO₂/mol MEA)</td>
<td>0.0772 0.0772</td>
<td>0.0772 0.0772</td>
</tr>
<tr>
<td>CO₂ loading of Rich MEA, (mol CO₂/mol MEA)</td>
<td>0.0828 0.1208</td>
<td>0.0828 0.3623</td>
</tr>
<tr>
<td>Average Lean MEA/Rich MEA, (mol CO₂/mol MEA)</td>
<td>0.0800 0.0000</td>
<td>0.0800 0.1250</td>
</tr>
<tr>
<td>CO₂ capture level (%)</td>
<td>94.9 2.1075</td>
<td>95.4 2.2432</td>
</tr>
</tbody>
</table>
5. Steady state modelling of Intensification Absorber

5.3 Model Validation

Simulation results with 2 different sets of correlations compared to the experimental data for Run 3 and Run 4

<table>
<thead>
<tr>
<th>Variable</th>
<th>Run 3</th>
<th>Run 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expt.</td>
<td>Set 1</td>
</tr>
<tr>
<td>CO₂ loading of Lean–MEA (mol CO₂/mol MEA)</td>
<td>0.0492</td>
<td>0.0492</td>
</tr>
<tr>
<td>CO₂ loading of Rich–MEA (mol CO₂/mol MEA)</td>
<td>0.0531</td>
<td>0.0530</td>
</tr>
<tr>
<td>Average Lean–MEA/Rich–MEA (mol CO₂/mol MEA)</td>
<td>0.0512</td>
<td>0.0511</td>
</tr>
<tr>
<td>CO₂ capture level (%)</td>
<td>98.20</td>
<td>93.28</td>
</tr>
</tbody>
</table>
5. Steady state modelling of Intensification Absorber

5.3 Model Validation - Summary

- Set 2 correlations gives a better error prediction compared to Set 1.
- The difference in error prediction at 56 wt% MEA concentration between Set 1 and Set 2 is not large.
- There is wide error prediction at 74 wt% MEA concentration between Set 1 and Set 2.
- Set 2 correlations account for the effect of viscosity and packing geometry while Set 1 correlations do not.
5. Steady state modelling of Intensification Absorber

5.4 Process Analysis – Key findings

- With RPB Absorber, there is no temperature bulge observed. Potential Reasons:
 - Because of the high gravity, most of the flow in RPB is droplet and thin film flow. This makes it difficult for liquid build-up in the packing which may result in energy build-up.
 - High degree of mixing and little residence time of the solvent in column makes it difficult to have energy build-up.

- With RPB Absorber, the Absorber can reduce 12 times in volume.
If you have interest in this work, please refer to the following two recent publications:

Key Publications

Acknowledgements

• Thanks to RWE npower for sponsoring a PhD Studentship from Nov. 2007 to Nov. 2010.
• Thanks to Natural Environmental Research Council (NERC) for funding Multiscale Whole Systems Modelling and Analysis for CO₂ Capture, Transport and Storage (Ref: NE/H013865/1) from Jun. 2010 to Dec. 2014.
• Thanks to BF2RA for sponsoring a PhD Studentship from Mar. 2011 to Nov. 2015.

• Thanks also to my past and current PhD students…
Key References

Lee, J., Reay, D., Ramshaw C., Post-combustion carbon capture research at Newcastle University, Presentation to PIN, 2nd May, 2012 Available at: www.pinetwork.org (accessed June 2013)

Key References

Thanks for your attentions!