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® Technical tools: process modeling, simulation, control and
optimization

® Application areas: conventional power generation, CO,
capture, CO, transport, energy storage, biomass steam
gasification

e Currently 3 Research staff & 9 PhD students

® For more details, please refer to
http://www?2.hull.ac.uk/science/engineering/our%20staff/acad
emic/meihong%20wang.aspx
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« Background and Motivations for the Research

* Modelling of Post-combustion Carbon Capture (PCC)
with Chemical Absorption

* Integration between Coal-fired Power Plant and PCC

 Why is Process Intensifications necessary for PCC?
o Key Findings from Biliyok et al. (2012), Lawal et al. (2012) and Lawal et al. (2010)
o Introduction to Process Intensification
o Current status of Pl for PCC worldwide

« Steady state modelling of Intensified Absorber
o Methodology
o Correlation Sets used
o Model Validation & Process Analysis
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1. Motivations for the Research

1.1 Energy Demand

® Energy demand expected to rise
with increasing population and the
emergence of the Brazil, Russia,
India, China and South Africa (BRICS)
countries.

® Power generation is the single
largest contributor of anthropogenic
CO, emissions.

® Coal releases twice as much CO, as
natural gas; but offers economic
advantages.
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1. Motivations for the Research

1.1 Energy Demand

® UK electricity generation by fuel source (pecc, 2010)

o In 2009, about 32% of UK electricity generation is from coal-fired power station
o This is projected to fall to 22% by 2020.
o NGCC power plant has a share of 45% in 2009, which will fall to 29% in 2020.

UK Electricity Generation
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1. Motivations for the Research

1.1 Energy Demand

® For UK National Grid status http://www.gridwatch.templar.co.uk/
o On 12/11/2014, 35% electricity generated from Coal & 37.5% electricity generated
from Natural Gas.
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1. Motivations for the Research

1.2 CO, Emissions

e Carbon dioxide is the main greenhouse gas.

e Global concentration of CO, in the atmosphere was about
280 parts per million by volume (ppmv) in around 1860
(pre-industrialisation levels).

e In 1958, it was approximately 316 ppmv.

e It Is approximately 369 ppmv in 2005 (UNEP, 2005).

e CO, concentration is around 400 ppm and is increasing
by 2-3 ppm every year.

e Atmospheric CO, must remain 450 ppm to ensure that global
warming stays below 2°C.
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1. Motivations for the Research

1.2 CO, Emissions

e Main sources
o Fuel combustion activities
o Industrial processes
o Natural gas processing

® Sectors
o Power generation (coal, natural gas)
o Transportation
o Industrial (Manufacturing)

e Types of Emitters
o Large emitters of CO, (emitting more than 0.1 MtCO, per year)
o Small emitters of CO, (emitting less than 0.1 MtCO, per year)
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1. Motivations for the Research
1.2 CO, Emissions
® UK CO, Emissions clusters (DECC, 2010)
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Department of Energy and Climate Change (DECC), (2010), Updated energy and emissions projections, UK Government,

Report number URN10D/510
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1. Motivations for the Research

1.3 Climate Change

® Average global temperature increased by 0.74°C in the 20t century.
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® Sea levels have risen by 17cm due to thermal expansion of the ocean and

melting of ice.

® Dramatic increase in the
frequency, intensity and
duration of floods, droughts
and heat waves.

® Global warming potential
(IPCC, 2007)
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1. Motivations for the Research

1.4 CO, Reduction Target

® |PCC recommends that CO, emissions be cut by 50% by 2050 compared

1990 levels.

® Trajectory for target CO, emissions reduction in the UK (DECC, 2010)
o The first target requires UK to cut its carbon emissions to achieve reduction of

34% below 1990 levels by year 2020. 600
v" (@) Reduction of 23% for the period 2008-2012; o, emissions
v’ (b) 29% for period 2013-2017 500 o

v" (C) to 34% for period to 2018-2022

400

300

CO,emissions (MtCO,)

lllustrative trajectories
for CO, emissions in
line with our 2050 goals

100

0

2010 2020 2030 2040 2050



L EO3L XN
universrry of Hull

2. Modelling of PCC using Solvents

2.1 CO, Separation Technologies
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® PCC: Process Options for CO, Capture (Rao and Rubin, 2002)

CO; Separation Technologies

Microbial/Alg
al Systems

- Polyphenylenoxide
- Polydimethylsiloxane

Absorption Adsorption Cryogenics Membranes
Chemical Adsorber Beds: Gas Separation
| | - MEA - Alumina B
- K5-1 and K5-2 - Zeolite
- Ammonia - Activated Carbon
- Others Regeneration Methods
& : —| Gas Absorption
- Pressure Swing
- ) - Polypropylene
Physical - Temperature Swing
— - Selexol - Washing
- Rectisol
- Others
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2. Modelling of PCC using Solvents
2.2 Modelling of PCC with MEA process

® Post-combustion Carbon Capture (PCC): Chemical Absorption

co,
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& Dehydration
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Industrial processes Gas —T\- Process +CO, Sep.
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| v

Raw material Gas, Amn;monia, Steel

3|PCC (2005), IPCC Special Report on Carbon Dioxide Capture and Storage,
Cambridge University Press, Cambridge, UK.

Treated Gas Condenser
Lean MEA CO; to
solution compression
Absorber / Stripper

Flue Gas
from power
plant

Reboiler

_/

Rich MEA
solution

Cross Heat
Exchanger

Steam from
power plant
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2.2 Modelling of PCC with MEA process

e Model Complexity

Mass transfer
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Kenig, E. Y., Schneider, R. and Gdrak, A. (2001), "Reactive absorption: Optimal process design via optimal
modelling", Chemical Engineering Science, vol. 56, no. 2, pp. 343-350.
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2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process
® Rate-based dynamic modelling based on Two-film Theory
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2. Modelling of PCC using Solvents

2.2 Modelling of PCC with MEA process
® Absorber and Stripper model in gPROMS

CO, Product
»t =

Condenser

Lean MEA from
Regenerator

Lean Gas to Stack

:5 Stripper Column

Absorber Column Rich MEA

from Absorber

Lean MEA to
Absorber

Rich Flue Gas
from power plant
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2. Modelling of PCC using Solvents
2.2 Modelling of PCC with MEA process

® Chemical Equilibrium is defined by ElecNRTL Activity
Coefficient Model in Aspen Properties®.

® Maxwell-Stefan Formulation used to determine fluxes across
films.

® Vapour diffusivity calculated by the Fuller method.

e Liquid diffusivity determined by a method provided by
Veersteeg and van Swaaij.

® Onda correlation used to determine the mass transfer
coefficients in the films and the wetted area.

e Heat of Absorption determined via formulations derived from
tests at the University of Texas in Austin.

eering and Physical Sciences
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2.3 Pilot plants for CO, Capture with Chemical Absorption

~3Ton CO, / da
1 Ton €O, / day , / day 4Ton CO, / day

aam,

SaskPower
Boundary Dam

RWE nPower, Univ. Texas at Austin, SRP
Didcot CTF Pilot Plant
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2. Modelling of PCC using Solvents
2.3 Pilot plants for CO, Capture with Chemical Absorption

« The biggest test facility in the UK -
Ferrybridge (100 Ton CO, [/ day) -
commissioned on 30/11/2012.

* The project — worth more than £20million

« A partnership between industry partners
Scottish and Southern Energy (SSE),
Doosan Power Systems and Vattenfall

« Supported by DECC, the Technology
Strategy Board (TSB) and Northern Way

A 500MWe coal-fired subcritical power plant releases over 8000 tonne CO,/day
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2. Modelling of PCC using Solvents
2.4 Model Validation at pilot scale

* Higher L/G ratios result in B L—|

Cooler
Liquid

higher CO, removal rates.

» Typical operation would be
around 90% CO, capture
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Flue Gas

Gas Accumulator

Storage Tank Condenser

Rich MEA

Stripper

Heater

Reboiler

G(iooler

Case | L/Gratio (kg/kg) | CO, removal (%)
Steady state validation | 32 6.6 95
47 3.4 69
Dynamic validation | 25/26 8.5 93

@ Dugas, R.E. (2006). Pilot Plant Study of Carbon Dioxide Capture by Aqueous
Monoethanolamine. Master thesis, Chemical Engineering, University of Texas at Austin.
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2. Modelling of PCC using Solvents
2.4 Model Validation at pilotscale |

®5

Case 32 Absorber Temperature Profile
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2. Modelling of PCC using Solvents
2.4 Model Validation at pilot scale

® Dyna mic Validation — flowsheet for conventional process

2lawal, A. (2010), Study of a Post-Combustion CO, Capture Plant for Coal-Fired Power Plant through
Modelling and Simulation, PhD thesis, Cranfield University, Bedford, UK.
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2. Modelling of PCC using Solvents
2.4 Model Validation at pilot scale

® Dynamic Validation - Process Inputs and Disturbances

(a) Lean MEA mass flow rate to the absorber

* Slow decrease in 2 i L L i L r i i
lean solvent flow
rate into the

I
©
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

Carry out preliminary design considerations and calculations

Estimate required sizes of important equipment based on
relevant flow rates

Run case study simulations to select design and operating
variables
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant

Absorber and Regenerator Diameters

14.00

12.00 N

E \
o
£ 10.00
£
©
B go0
(5} \\
2
@ 6.00
o]
<
o
L 400
5
O
()
T 200
0 1 2 3 4

Number of Absorber Columns

Required diameter for Regenerator = 8.39m

+—_ Column
diameters

should be
below 12.2m
(40feet)!2!
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant
Absorber and Regenerator Height

* The volume of packing required for mass transfer
IS estimated using methods suggested by [3].

Surface Area of packing required
Specific areaof packing Accounting for
liquid
molar flow of CO, maldistribution

mass transfer flux x wetted arédh ratio

Volume of packing required =

Surface Area of packing required =

mass transfer flux = overall mass transfer coefficient X driving force (AC)

1
overall mass transfer coefficient =
1
(Vo)

1/ mEKL)

[3] Abu-Zahra, M.R.M. et al. (2007) CO, capture from power plants: Part |. A parametric study of the
technical performance based on monoethanolamine. International Journal of Greenhouse Gas
Control,1:37-46.
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.1 Scale-up of the Absorber and Stripper for 500 MWe Coal-fired Subcritical Plant
Summary of preliminary design parameters

Description Value
Design flue gas mass flow rate (kg/s) 600
CO, capture level (%) 90
Absorber column number 2
Absorber diameter (m) 9
Regenerator column number 1
Regenerator column diameter (m) 9
Absorber operating pressure (10° Pa) 1.01
Regenerator operating pressure (10° Pa) 1.62
Lean solvent mass fraction (MEA) 0.3048
Lean solvent CO, loading (mol CO,/mol MEA) 0.29
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.2 Integration between Power Plant & PCC Plant

SO, particulates

40 — 50°C t

N, (+ inerts)

Flue gas from Direct Contact Component CO,andH,0 .
g Blower

power plant Cooler Adjuster

v
Flow Splitter to
absorber
columns

" Flue gas to
, Capture plant
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.2 Integration between Power Plant & PCC Plant

Stripping vapour stream

Splitter

LP
Turbine

------------ ! to Regenerator Liquid MEA stream
| A from Regenerator
R '\ Condensate
g "I——DQ-——> to low

. 1| Reboiler
N — pressure
@-- l Lean MEA feed heater

Spray
Water
Pump

. = Stream to
Absorber

— - =  Amine Solvent Stream
—  Steam
— = =»> Condensate/Water

—————————— Instrument Line
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.3 Flowsheet for Power Plant with PCC Plant

0.10130Fa
234kl
2.5% GOt G050, ading
(" \e033% MEA (wt)
142 Okgls
0.4621Pa *>—
551.5K
y . Absorber]
HP
: 580 fkgls 204 8kl
338 2kefs 0.0941Pa 0.1245MPa fj?fé“&{s
& 0.576MPa 313K 313K Toadng
| 2% CO(wt) 21% CO,{w)
Feedheaters r
56.8kgls -\
Absorber2

Wa b MEA Vileup
15 21kgis Water
CO, product for
corpression
o204y 0-1621MPa 2118 kgls
Coolizg Duty b 370% H,0 (wt)
94.1% CO(wrt)
Cordenser
1420kgfs
0.4621[Pa
o 551.5K
Regenerator 0.3Pa
410K
K .
31066kgls 35?.1MW eating Duty
386K boiler
30.5% MEA (wl) ® b r 17.Tkels
6.4% CO, (wt)
63.2% H,0 (wt)
Reboiler Stear
Desuperheater

1243kgfs
407K
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.4 Thermal Performance Analysis

*Net power output drops to 453MWe

Power plant efficiency drops 6%

*42% of steam Is drawn off at the IP/LP crossover for
solvent regeneration

Note: CO, compression and CO, capture plant
auxiliary electricity requirements were not considered

Engineering and Physical Sciences
I,
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3. Integration between Coal-fired subcritical power plant and PCC Plant
3.5 Dynamic Analysis

(a) Variation of Power Plant Output with time (c) Variation of Steam drawoff rate with time
T T T T T T T T T 13

IS
o
=}

N
S

Net Power Output (MWe)
IS ~
N w
o o

Steam drawoff rate (kg/s)

410 r r r r r r 125 r r r r r r
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Time (hours) Time (hours)

Dynamic case study: The
response of the integrated plant

10 15

with a step reduction in target S Net power output
power Output_ ----- Fuel burn rate
g 4 Steam draw off
Solvent circulation
|dentified possible interaction 6 - A — . -Power plant efficiency

Percentage Deviation from original value

between control loops 8 - Capture Level
) -10 A
Response of CO, capture plant is L

slower than that of the power Time (hours)
plant
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4. Why is Process Intensification necessary for PCC?
4.1 Key Findings from Biliyok et al. (2012)

® Publication in International Journal of Greenhouse Gas Control on
Dynamic Modelling, Validation and Analysis of PCC (with MEA) Process

Engineering and Physical Sciences

International Journal of Greenhouse Gas Control 9 {2012) 428-445

)
Contents lists available at SciVerse ScienceDirect

Greenhouse
Gas Control

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Dynamic modelling, validation and analysis of post-combustion chemical
absorption CO, capture plant

Chechet Biliyok?, Adekola Lawal®, Meihong Wang?®*, Frank Seibert¢

4 Process Systems Engineering Group, School of Engineering, Cranfield University, Bedfordshire MK43 0AL, UK
b process Systems Enterprise Ltd, 26-28 Hammersmith Grove, London W6 7HA, UK
t Separation Research Program, University of Texas at Austin, Austin, TX 78758, United States
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4. Why is Process Intensification necessary for PCC?

4.1 Key Findings from Biliyok et al. (2012)
® In PCC using MEA process

o Development of dynamic models for PCC

using MEA (considering rate-based mass
transfer and reactions assumed to be at
equilibrium)

In addition to steady state validation, dynamic
model validation performed (in collaboration
with University of Texas at Austin).

Through Case Study (i.e. model-based
process analysis), it provides evidence that
PCC process is mass transfer limited (while
the reaction between MEA and CO, is fast
enough).

Further analysis indicates the slow mass
transfer is caused by the flow pattern inside
packed column (i.e. laminar flow).

~3Ton CO, / day
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4. Why is Process Intensification necessary for PCC?
4.2 Key Findings from Lawal et al. (2012)

® Publication in Fuel on Integration of full scale Coal-fired subcritical
Power Plant with PCC (using MEA) Process
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4. Why Is Process Intensification necessary for PCC?
4.2 Key Findings from Lawal et al. (2012)

® StUdy Of 500 MWe SUbCI’itiC&' COa.|- Summary of preliminary design parameters for capture plant
fired power plant integrated with PCC
using MEA process through Dynamic

CO, mass fraction in flue gas 0.21

Modelling and Simulation

©
o

CO, capture level (%)

N

O The main Cha”enge of PCC for 500 Absorber Column Number
MWe subcritical coal-fired power plant [EEdESiEn il
(such as Didcot A) isits large flue gas [aaaais i
ﬂOWI‘ate (around 600 kg/s) Regenerator Column Number

o Study of scale-up for PCC plant to B
match the requirement of full scale
coal-fired power plant (to capture over
8,000 tons CO,/day).

o Size of Packed Columns required is
huge, which translates to high capital
cost

o - = ©
~

Absorber operating pressure (10° Pa) 1.01
Regenerator operating pressure (10° Pa) 1.62
Lean solvent mass fraction (MEA) 0.3048

Lean solvent CO, loading (mol CO,/mol MEA) 0.29
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4. Why is Process Intensification necessary for PCC?
4.3 Key Findings from Lawal et al. (2010)

@® Publication in Fuel on Dynamic Modelling and Analysis of pilot scale PCC (using MEA)
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4. Why is Process Intensification necessary for PCC?
4.3 Key Findings from Lawal et al. (2010) /L gz‘ﬁ?—

® Study of Dynamics and Operation of PCC -
using MEA process at Pilot Scale through o —
dynamic modelling and simulation
o The dynamics of the PCC using MEA process 112000 Siem
Is very slow (time constant around 57 minutes). g oo
o The main reason is high L/G ratio required £ 106000

®
® 104000

(generally around 6.0 mass/mass for flue gas =z ipwm
from typical coal-fired power plants) to achieve %
the capture level 96000 . . ‘ ‘ ‘ ‘

0 2 4 6 8 10 12

o This large flowrate of MEA (at 30.48 wt%) Time (hours)
contributes to high energy consumption.

Reboile

o This also poses considerable challenges in g, —\

process operation when integrated with power £ \\
plants. N \

884 \

g N—

T T T T T 1
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4. Why is Process Intensification necessary for PCC?
4.4 Introduction to Process Intensification (PI)

® Process Intensification (PI) is a strategy for
making major reductions in the volume of
processing plant without compromising its
production rate.

® Rotating packed bed (RPB) is one of the PI
technologies proposed by Prof Ramshaw in 1979.

® RPB takes advantages of centrifugal forces to
generate high gravity and consequently boost the
mass transfer performance.

Rotating Packed Bed used for REACTIVE
STRIPPING —40 times smaller plant
(Dow Chemical, HOCI process)
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4. Why is Process Intensification necessary for PCC?
4.4 Introduction to Process Intensification (PI)

Liquid in

Liquid distributor

Liquid out

Liguid in

Liquid out

Schematic diagram of a rotating packed bed setup and corresponding
segmentation (Llerena-Chavez and Larachi, 2009 )
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4. Why is Process Intensification necessary for PCC?

4.5 Current status of Pl for PCC worldwide

® Experimental study on intensified Absorber

o Newcastle
v Carried out experimental study of intensified absorber using MEA solvent
as absorbent.
v' The experimental rig has been upgraded (Lee et al., 2012)
o Beljing University of Chemical Technology (BUCT)
v" liquid side volumetric mass transfer coefficient (k @) in RPB shows at least
one order of magnitude improvement than conventional packed column
(Zhang et al., 2011)
o India
v' Compared RPB with split packing RPB (Rajan et al., 2006; Agarwal et al.,
2010; Reddy et al., 2011).
v" Improvement in both gas and liquid phase mass transfer
o Talwan
v Used mixed alkanolamines solvent which results in improved CO,, capture
level
v' Counter-current flow arrangement and cross flow arrangement
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4. Why is Process Intensification necessary for PCC?
4.5 Current status of PI for PCC worldwide

® Study on intensified Absorber through modelling
o Taiwan
v" Cheng and Tan (2011) used continuous stirred tank model in series to
model/simulate intensified absorber.
o University of Hull
v Aspen Plus and visual FORTRAN used to model and simulate intensified
absorber (Joel et al., 2014a,b)
v" Model validation with two sets of mass transfer correlations (Joel et al.,
2014b)
v' Compared conventional and intensified absorber, and found a volume
reduction factor of 12 times (Joel et al., 2014Db)
o BUCT
v' End effect problem along the radial direction (Vi et al., 2009)

v' Mechanism of gas—liquid mass transfer with reactions in RPB at higher
gravity level was illustrated (Yi et al., 2009)

Engineering and Physical Sciences
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4. Why is Process Intensification necessary for PCC?
4.5 Current status of PI for PCC worldwide

® Experimental and Modelling study on intensified Stripper

o Newcastle
v' Jassim et al. (2007) reported RPB stripper for desorption runs for 30
wt%, 54 wt% and 60 wt% MEA solution

v" Reduction factor in stripper height of 8.4 and stripper diameter of 11.3
(Jassim et al., 2007)

o Taiwan

v' Cheng et al. (2013) setup was an improvement to what was reported in
Jassim et al. (2007)

v' They introduced a back pressure regulator in order to operate the
regenerator at higher temperature and pressure (Cheng et al., 2013)

o In both studies, reboiler is not intensified

Engineering and Physical Sciences
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4. Why is Process Intensification necessary for PCC?

4.5 Current status of PI for PCC worldwide
® Summary
o There are good number of studies on intensified Absorber through
experiments and/or modelling

v" Few studies on pressure drop across column validated with experimental
data

v" No experimental data on electricity consumption for driving the motor.
o There are very limited studies on intensified Stripper/Regenerator
through experiments and/or modelling

v' The size of intensified stripper reduced significantly, but the reboiler is still
huge.

o There is merely no study on intensified heat exchangers for PCC
application
o There is no study of whole intensified PCC process

v' There is no pilot plant for whole intensified PCC process

v" There is no study of the whole intensified carbon capture process through
experiments or modelling
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5. Steady state modelling of Intensification Absorber

5.1 Methodology

Aspen Plusw Rate Based
Model

L J

Writing the user defined correlations in
Visual FORTRAN Compiler

!

Linking Visual FORTRAN compiler
with Aspen Plus model

I

Running the simulation

}
Model Validation

{

Process Analysis

EPSRC

Engineering and Physical Sciences
ea >ouncil
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5. Steady state modelling of Intensification Absorber
5.2 Correlation Sets used

Correlation sets used for the modelling and simulations

Correlations Setl Set 2

Liquid-phase mass transfer coefficient Tung and Mah (1985) Chen et al., (2006)

Gas-phase mass transfer coefficient  Onda et al., (1968) Chen, (2011)
Interfacial area Onda et al., (1968) Luo et al. (2012)
Liquid hold-up Burns et al., (2000) Burns et al., (2000)
Dry pressure drop Llerena-Chavez and Llerena-Chavez and

Larachi (2009) Larachi (2009)
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5. Steady state modelling of Intensification Absorber

5.3 Model Validation

Input process conditions for Run 1 to Run 4 (Jassim et al., 2007)

Variable Runs
Run 1 Run 2 Run 3 Run 4

Rotor speed (RPM) 600 1000 600 1000
Lean MEA temperature (°C) 39.6 40.1 41 40.2
Lean MEA pressure (atm.) 1 1 1 1
Flue gas flow rate (kmol/hr) 2.87 2.87 2.87 2.87
CO, composition in Flue gas (vol 4.71 4.48 4.40 4.29
%)
Lean-MEA flow rate (kg/s) 0.66 0.66 0.66 0.66
Lean-MEA composition (wt %)

H,O 40.91 40.91 22.32 23.41

CO, 3.09 3.09 2.68 2.59

MEA 56.00 56.00 75.00 74.00
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5. Steady state modelling of Intensification Absorber
5.3 Model Validation

Simulation results with 2 different sets of correlations compared to the
experimental data for Run 1 and Run 2

Variable Run 1 Run 2
Expt. Setl Errorl Set?2 Error 2 | Expt. Setl Errorl Set?2 Error 2

CO, loading of Lean MEA, 0.0772 0.0772 0.0772 0.0772  0.0772 0.0772
(mol CO,/mol MEA)

CO, loading of Rich MEA, 0.0828 0.0827 0.1208 0.0829 0.1208 [0.0828 0.0825 0.3623 0.0827 0.1208
(mol CO,/mol MEA)

Average Lean MEA/Rich ~ 0.0800 0.0800 0.0000 0.0800 0.0000 |0.0800 0.0799 0.1250 0.0801 0.1250
MEA, (mol CO,/mol MEA)

CO, capture level (%) 94.9 92.9 2.1075 96.72 19178 |95.4 93.26 2.2432 96.95 1.6247
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5. Steady state modelling of Intensification Absorber
5.3 Model Validation

Simulation results with 2 different sets of correlations compared to the
experimental data for Run 3 and Run 4

Variable Run 3 Run 4

Expt. Setl Errorl Set?2 Error 2 | Expt. Setl Error1 Set?2 Error 2

CO, loading of Lean—-MEA 0.0492 0.0492 0.0492 0.0483 0.0483 0.0483
(mol CO,/mol MEA)

CO, loading of Rich-MEA 0.0531 0.0530 0.1883 0.0531 0.0000 |0.0510 0.0521 2.1569 0.0524 2.7451
(mol CO,/mol MEA)

Average Lean-MEA/Rich- 0.0512 0.0511 0.1953 0.0512 0.0000 | 0.0497 0.0502 1.0060 0.0503 1.2072
MEA (mol CO,/mol MEA)

CO, capture level (%) 98.20 93.28 5.0102 97.36 0.8554 | 97.50 93.57 4.0308 98.66 1.1897
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5. Steady state modelling of Intensification Absorber
5.3 Model Validation - Summary

[ Set 2 correlations gives a better error prediction
compared to Set 1.

d The difference in error prediction at 56 wt% MEA
concentration between Set 1 and Set 2 is not large

d There is wide error prediction at 74 wt% MEA
concentration between Set 1 and Set 2

d Set 2 correlations account for the effect of viscosity and
packing geometry while Set 1 correlations do not.

eering and Physical Sciences
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5. Steady state modelling of Intensification Absorber
5.4 Process Analysis — Key findings

d With RPB Absorber, there is no temperature bulge

observed. Potential Reasons:

v' Because of the high gravity, most of the flow in RPB is droplet and
thin film flow. This makes it difficult for liquid build-up in the packing
which may result in energy build-up.

v High degree of mixing and little residence time of the solvent in
column makes it difficult to have energy build-up.

d With RPB Absorber, the Absorber can reduce 12 times
In volume.



d 3TN EPSRC
Umvnsn?op Hull

Engineering and Physical Sciences
Research Council

4If you have interest in this work, please refer to the

following two recent publications:

v Joel, A. S., Wang, M. and Ramshaw, C. (2014), Process analysis of
Intensified absorber for post-combustion CO, capture through
modelling and simulation, Int. Journal of Greenhouse Gas Control,
Vol. 21, p91-100.

vJoel. A, S., Wang, M., Ramshaw, C. (2015), Modelling and
simulation of intensified absorber for post-combustion CO, capture
using different mass transfer correlations, Applied Thermal
Engineering, doi: 10.1016/j.applthermaleng.2014.02.064.
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