

On the Performance of Porous Covalent Organic Polymers for CO₂ Capture Process at Elevated Pressures

Water and Energy Workshop Organized by Texas A&M University at Qatar

RUH ULLAH

Research Fellow Department of Chemical Engineering, Qatar University February 17, 2015 Doha, Qatar

Outline

- Global concern of carbon dioxide capture and storage
- Technologies in use
- Materials selection for CO_2 capture
- Synthesis and characterization of covalent organic polymers (COPs)
- Material performance for gases capture at various temperatures and pressures
- Adsorption kinetics

Global CO₂ Emission

Power Generation & CO₂ Emission

Post combustion

Fossil fuel or biomass is burnt and CO_2 is separated from the exhaust gases containing other gases

Pre-combustion

Fossil fuel or biomass is converted to a mixture of H_2 and CO_2 , where CO_2 is separated and H_2 is used as fuel

Oxy-fuel combustion

Oxygen is separated from air and fossil fuels burnt in an atmosphere of oxygen producing water and CO_2

Solvents

Monoethanolamine (MEA), mostly used, but, costly

Ionic liquid are very expensive and toxic

Deep eutectic solvents; new technology???

Membranes

Polybenzimidazole, need to be selective and tough

Adsorbents

Activated Carbon and MOF, need highly porous structure with high surface area Organic Polymer ???

- Metal Organic Frame Work
- Surface area: $4530 \text{ m}^2/\text{g}$
- Pore volume: $3.59 \text{ cm}^3/\text{g}$

- Maximum CO_2 uptake at 50 bars and 298k
- 54.5 mmol/g
- Oxidation and cost of materials are big issues

Material Selection (Zeolite)

- Surface area: 2400 m²/g
- Pore volume: $0.167 \text{ cm}^3/\text{g}$

- Maximum uptake at 1 bar and 273K: **8.6** mmol/g
- Maximum uptake at 20 bars 0.0051 mmol/g
- Hydrophilic in nature
- Needs high regeneration temperature (300 °C)

Material Selection (Activated Carbon)

Pore size	Micropoers	Mesopores	Macropores
Diameter	< 20 nm	20-50nm	>50 nm
Pore volume	0.15—0.5	0.020.1	0.5
(cm^3/g)			
Surface area(m ² /g)	100-1000	10-100	0.5-2

- Surface area: 2900 m²/g
- CO₂uptake at 50 bar: **47 mmol/g**
- Limitation at high pressure

26 April 2015

Atilhan Group

جامعة قطر oatar UNIVERSITY

Engineering Polymers

- Pore structure/ connectivity
- Dimensionality and symmetry
- Adsorbate site interactions
- Porous solid adsorbent material can be designed to be highly size- and shape-selective.

Polymer Synthesis

Ester (O=C-O) COPs

Core / Linker	но- Он Hydroquinone		HO HO Phloroglucinol			он		
CIOC Benzene tricarbonyl trichloride	COP-35	SA _{BET} : 5.4 m ² /g SA _{Lang} .: 7.5 m ² /g		COP-36	SA _{BET} : 11.1 m²/g SA _{Lang.} : 15.4 m²/g		COP-37	SA _{BET} : 54.2 m²/g SA _{Lang.} : 75 m²/g

Amide (O=C-N) COPs

H ₂ N-		H ₂ N-V-NH ₂			H ₂ N NH ₂		
A-aminobenzylamine		p-phenylenediamine			m-phenylenediamine		
COP-32	SA _{BET} : 46 m ² /g SA _{Lang} .: 63.8 m ² /g		COP-33	SA _{BET} : 53.2 m ² /g SA _{Lang.} : 73.4 m ² /g		COP-34	SA _{BET} : 33.4 m ² /g SA _{Lang.} : 46.2 m ² /g

Physical Properties of COPs

Sample	Structure	Surface	Pore volume	Tapped bulk
COP-32		BET = 46 Langmuir = 63.8	0.1389	0.19
COP-33		BET = 53.2 Langmuir = 73.4	0.2	0.156
COP-34		BET = 33.4 Langmuir = 46.2	0.095	0.253
COP-35		BET = 5.4 Langmuir = 7.5	0.011	0.125
COP-36		BET = 11.1 Langmuir = 15.4	0.031	0.22
COP-37		BET = 54.2 Langmuir = 75	0.19	0.2

26 April 2015

COPs Characterization

- We used Rubotherm® sate-of-the-art gas sorption apparatus.
- Two isotherms are used: 25 $^{\circ}C$ and 50 $^{\circ}C$
- Three pressures ranges were used i.e. 1 bar, 10 bars and 200 bars.
- Buoyancy correction has been taken care of.

Operating Principle

Schematics of magnetic suspension sorption apparatus operating principle. (A) sample loaded to measuring basket in high pressure cell; (B) Measurement point 1 (MP1) – magnetic coupling is on and mass of the sample is measured; (C) Measurement point 2 (MP2) – in– situ density of the adsorbed gas is measured.

CO₂ Up take

CO₂ Up take

جامعة قطر QATAR UNIVERSITY

CH₄ Up take of COP

Maximum adsorption of N2, CO2 and CH4 by COP							
	CO2 (m	mol/g)	Methane	(mmol/g)	N2 (mmol/g)		
Temp/Materi							
al	298K	323K	298K	323K	298K	323K	
COP32	1.109213	0.804201	0.223124	0.081515	0.080872	0.037786	
COP33	1.440349	0.981784	0.410248	0.289082	0.61099	0.259958	
COP34	1.116972	0.778442	0.41324	0.188905	0.177384	0.05648	
COP35	0.819419	0.554221	0.18187	0.130621	0.08249	0.059161	
COP36	0.557371	0.3717	0.0659	0.018713	0	0	
COP37	1.140691	0.723342	0.190126	0.107208	0.212632	0	

CO₂ Up take of COP-33

Mass transfer co efficient (k)

Mass transfer co efficient (k)

Over all performance

- QNRF
 - NPRP 5-499-1-088
 - UREP 15-131-2-044
- Spanish National Secretariat for Research and Development, Ministry of Economy.