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INTRODUCTION: Importance of Water

Quality water and quality life go hand in hand. The food we eat,
the house we live in, the transports we use and the things
we cannot do without in 24/7/365 determine our gquality of
life and require sustainable and steady water supplies
[Technical Roadmap, IChemE, 2007] .

" &
China (2006). 2.4 million Kenya: drought stricken in India: struggle for freshwater
people affecged February 2006 (regular event)

Source: http://www.guardian.co.uk/gallery/2007



To die for: Water tankers, public taps are
Madhya Pradesh’s riot spots. Jeevan
Malviya, wife Sita Bai and son Raju
were killed for drawing water from a
supply line. The state is on a water-clash
alert — 50 violent incidents have already
been reported this month

i i ARS like this play out across
25 May 2009: http://www.treehugger.com/clean-water/violence
-over-water-already-happening-in-india.htmi

9 May 2012: http://www.rainharvest.co.za/2012/05/africa-u-s-
response-to-future-water-crisis-takes-shape/

Without more effective water management systems, lack of water
availability will become a problem threatening national security in many
countries important to the United States — US Intelligence (9 May 2012)



INTRODUCTION: Water Use and Source

Increase in population

Increase in standards of living
Increase in water demand

Increase in water pollution

Only limited resources of freshwater

Freshwater consumption is increasing
at the rate of 4-8%/yr, 2.5-times
the population growth [Lior,
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INTRODUCTION: What Do We Do?

Certainly we do not want to resort to 70% locked up glacial ice,
permafrost, or permanent snow.

The alternative is desalination of huge amount of saline water around us.

Different desalination processes are around us for many decades. The
guestions are:

* Are these energy efficient ?
 Cost effective?
* Environment friendly?




DESALINATION PROCESSES: Different Types

Desalination processes
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|

Thermal Processes Membrane Process
' I
Vapour Multistage Flash Mulh — Effect Electrolysis Revarse
Compression Distillation Evaporator .
¥ ¥
Once Through Brine Circulation

* MSF is the dominant thermal processes
* RO is the dominant membrane process.

MSF: 9 $/m3 (1955) to 1.044 $/m3 (2001) to 0.5 $/m3 (2007)
RO: ~ 3.5 $/m3 (1970) to 0.8 $/m3 (2000) to 0.53 $/m3 (2005)
(Reddy & Ghaffour, 2007) - to 0.25 $/m3 (Sassi & Mujtaba, 2010)



Thermal Desalination Process: MSF [1950 -]
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Many alternative configurations
possible depending on the way the
seawater Is fed, brine is recycled

Side Walls

[Spiegler, 1977; EI-Dessouky and
Ettouney, 2002; Tanvir & Mujtaba, 2008;
Hawaidi & Mujtaba, 2011]




CAPE COMMUNITY & MSF DESALINATION

« CAPE community makes extensive use of model based
techniques in design, operation, control and synthesis
addressing sustainable production of goods with
minimum environmental impact.

* The vyearly event of European Symposium on
Computer Aided Process Engineering (since 1992)
and 3-yearly event of International Symposium on
Process Systems Engineering (since 1985) and the
Computers and Chemical Engineering Journal
(published by Elsevier since 1979) cover design,
operation, control, process Integration of many
processes but desalination (very limited).




MSF DESALINATION IN PUBLIC DOMAIN

* Flash distillation existed from the beginning of the century
» Office of Saline Water, USA established in 1952 to develop economical
flash distillation based desalination process — Cadwallader (1967)

* First patent of MSF process for desalination in 1957 - Silver
* First published paper on MSF process in Engineering, 1958 - Silver

* First commercial plant installed and commissioned in 1960 - Silver
» Desalination Journal begun in 1966 with first paper on MSF (design and
optimisation) — Clelland & Stewart

* First paper in Ind. Eng. Chem. in 1967 on MSF (scaling) - Cadwallader

* First paper in Chem. Eng. Sci. in 1970 on MSF (optimisation) — Mandil &
Ghafour

* First paper in Comput. Chem. Eng. in 1986 on MSF (modelling) — Helal
et al.




MSF DESALINATION & CAPE COMMUNITY
MSF Process Model

Connection
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Physical Properties (heat capacity, density, BPE, heat of vaporisation)
HTC (fouling, noncondensables) Pressure/Temperature drop
Heater, Demister, Condenser, Stages, Vents (materials, geometry)

Inter-stage flow (orifice) Salt deposition/corrosion (kinetic model)



STATE OF THE ART: MSF Process Model

Helal, Medani, Soliman & Flower, comput chem eng, 1986
 Detailed Stage to Stage Model

* Nonlinear BPE correlation and other physical properties as (T, X)
» Temperature loss due to demister included

« OHTC via polynomial fit (fouling included)

* Very high temperature operation o  Comnection
(Tsteam = 174 C, TBT = 162.7 C) \\ FTERE e nl
- Very high seawater temperature, 63 C e A e e
- Model equations linearised for easy solution. s == === TG0,
oue C,_,H_://n\_\[ ==t
El-Dessouky et al., Desalination, 1995

Model based on Helal et al. (1986) but included

« Heat losses to the surroundings

* Effect of non-condensable gases (air, O2, CO2) on heat trans area
« Constant inside/outside tube fouling factors

* Pressure drop across demister

« Constant non-equilibrium allowance (stage thermal efficiency)




STATE OF THE ART: MSF Process Model

Tanvir and Mujtaba, Desalination, 2006, 2008; Tanvir and Mujtaba,
ESCAPE-2006 (&PSE), 2007; Hawaidi and Mujtaba (ESCAPE-2010),
Said et al. (ESCAPE-2010); Hawaidi and Mujtaba (Chem Eng J, 2010;
Ind Eng Chem R, 2011)

Model based on Helal et al. (1986) but included

NN based correlation for BPE calculation. w o et s,

 Dynamic fouling el sy

« Non-condensable gases on HTC gi‘sgllati‘iu ORI KA

 Demister fouling O~ i Sy e TR
i R e

Interstage Device

Al-Fulalj, Cipollina, Bogle, Ettouney, Desalination, 2011; Desalination
& Water Treatment, 2011

 Detailed stage modelling
* CFD modelling of demister




USE OF MODEL IN DESIGN AND OPERATION
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Basis: Given Freshwater Production Rate, Seawater composition and

temperature

Design: Number of stages, Width and height of the stages, Heat transfer
area, Materials of construction, Vent line orifice (air and non-
condensable), Demister size and materials, inter-stage brine transfer
device, Brine heater area

Operation: Steam flow, Top brine temperature, brine recycle, seawater
rejection

Cost: Capital, Operating (utilities, cleaning), Pre-treatment (chemicals)

[Rosso et al., 1996; El-Dessouky and Ettouney, 2002; Tanvir and Mujtaba, 2006, 2007, 2008]




Model Based Insight - 1

Effect of Seawater Temperature on Water Supply —
Tanvir & Mujtaba, IWC, 2005; ESCAPE-2006

Temp, C Freshwater, | % drop
kg/hr
23 (winter) |1.09E6  |---—----
35 9.31E5 14.6
45 (summer) | 7.88E5 27.7

To supply freshwater at a fixed
rate throughout the year or to
Increase the production at any
time of the year, the common
Industrial practice is to operate
the plant at high temperature,
leading to more energy
consumption and Increased
environmental impact.

ElMoudir et al.,.Desalination; 2007
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STATE OF THE ART: Optimisation

Fixed Freshwater Demand (No fouling, One seawater temperature):.
*Qualitative optimisation of large scale MSF, Clelland and Stewarrt,
Desalination, 1966

« Quantitative, short-cut model based analytical optimisation, Mandil &
Ghafour, Chem eng Sci, 1970

» Dynamic Programming based optimisation with simple stage-to-stage
model, Coleman, Desalination, 1971

* NLP based optimisation with detailed model, Mussati et al., Desalination,
2001. NLP based global optimisation with short-cut model, Mussati et al.,
Desalination, 2004

» Mussati et al. (Desalination, 2004) — MINLP (Mixed Integer Nonlinear
Programming) based optimal design and operation

* MINLP based optimisation with detailed model, Tanvir and Mujtaba,
ESCAPE-2007, Desalination, 2008




STATE OF THE ART: Optimisation

Fixed Freshwater Demand (fouling, NCGs, variable seawater temperature):

NLP based optimisation with detailed model, Hawaidi and Mujtaba
(ESCAPE-2010, Chemical Eng J (2010)), Said et al. (ESCAPE-2010)

Variable Freshwater Demand (fouling, NCGs, variable seawater
temperature):

* NLP based optimisation with detailed model, Hawaidi and Mujtaba
(ESCAPE-2011, Ind Eng Chem R (2011)), Said et al. (CMS-2012)




Average monthly seawater temperature and freshwater
demand/consumption profiles during a year
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Tsteam

Number of stages

Model Based Insight - 2

Seawater Temperature vs Design for Fixed Water Demand and
Minimum Energy Consumption/Minimum Cost

. Low and almost Low temperature operation will reduce the
@ constant scaling & corrosion & amount of anti-scalant
o oL and thus will improve plant efficiency and will
© e reduce environmental impact.
......... @
................................... Fresh Wziter
. !
5-8% variation in JSsavater Summer
steam and brine flow p Brine
Connect Units As You Need
23 35C Fresh Water

Seawater Temperature
Winter

Tanvir & Mujtaba (ESCAPE-2007; Desalination, 2008); Hawaidi & Mujtaba (2010)



The variation of total monthly cost with total number of
stages during a year
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STATE OF THE ART: Dynamic Process Model

* Hussain et al. (simulation), 1993 (SPEEDUP)

« Maniar & Deshpande (control), JPC, 1995 (SPEEDUP)
*Thomas et al. (simulation), comput chem eng, 1998 (SPEEDUP)
» Mazzotti et al. (simulation), Desalination, 2000 (LSODA)

« Sowgath (simulation), PhD Thesis, 2007 (gPROMYS)

« Hawaidi and Mujtaba (2011), Said et al. (2012), Optimisation with
variable water demand

Extension of Helal et al (1986) model in all these dynamic models

State variables: Stage Mass, Concentration, Temperature



Coping with Variable Freshwater Demand

Hawidi and Mujtaba, 2011
Said et al., 2012
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Dynamic Seawater Temperature and Freshwater

Consumption Profiles
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Process Constraints
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Storage tank level profiles at different number of stages
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Use of Renewable Energy Desalination Process
Mathioulakis et al. (2007)

Renewable Energy
l

Geothermal Solar Wind
| |
PV Solar Thermal |
Electricity Solar ‘ ¥ ]
Collectors RO RO |

o [ .

MSF|:

With renewable energy sources the cost in 2006 was10.32$/m3 (Tzen,
2006).



Environmental Impact

Adjust
Operation/
Post treatment

Existing Dynamic

Process Legislations

Environmental
Impact

Sommariva, Hogg and Callister, Desalination, 2004

 First paper establishing relations between improvement in efficiency
and environmental impact (paper without a single reference)



Environmental Impact

||~ New Design &

Operation

Some recent LCA based works of Vince, Aoustin, Breant and Marechal
(2008 a,b) are worth noting in this respect.



By the year 2030, the global needs of water would be 6900 billion m3/day
compared to 4500 billion m3/day required in 2009 (Water Resources
Group, 2009).

Improvement in standard of living requires sustainable and steady water
supplies (IChemE Technical Roadmap, 2007).

Global thirst in the next 25 years will turn millions into water refugees [The
Independent, 23 March 2001, London].

Water refugees are likely to become commonplace leading to hydrological
poverty. Millions of villagers in India, China and Mexico may have to move
because of a lack of water [February 14, International Herald Tribune,
2004].

WHAT CAN WE DO??



WHAT CAN WE DO??

We need to ensure
sustainable and
steady water supplies




Opportunities for the PSE Community

Mass Balance
Energy Balance
Physical Properties
Fluid Flow
System Heat Loss

Taylor Made Algorithm
(limited opportunities for
detailed performance
evaluation)

Qualitative

Short-cut Model Based
Detailed Model Based
Repetitive simulation

NLP/MINLP based
Variable seawater temperature
Variable Demand, Wide
Salinity
Structure, Energy Recovery

\ Process Model

(Steady State/
Dynamic)

|/

S

SIMULATION

(Steady State/
Dynamic)

OPTIMISATION

Design &
Operation

(Steady State/
Dynamic)

Considered in the Past

Model Based Approach

Kinetic Model (Fouling/Scaling)
Fluid Flow (non condensable)
Corrosion Model (Material
selection)

Fluid Mixing
Environmental Impact Model
System Heat Loss
Renewable Energy System

SPEEDUP, ASPEN, gPROMS
(not widely used)
(unlimited opportunities)

Dynamic (with Fouling & Scaling)
SS Optimisation
Irregular Demand (Day/Night)
Huge opportunities- material
selection, Maintenance,
scheduling/operation for Variable
water demand (day/night)
Structure, Hybrid System, Energy
Recovery

Future Opportunities




Finally,
MSF Model:
Helal, Medani, Soliman & Flower, comput chem eng, 1986

Cited only 73 times in the last 28 years!

Certainly, PSE/CAPE community has lot to offer!!






