GHG Footprint Reduction Through Carbon Integration

(and some more information)

Patrick Linke

Professor and Chemical Engineering Program Chair

Doha, 16 February 2015

GLOBAL CHANGE: ENERGY & ENVIRONMENT IN HARMONY ?

Energy

Environment

- Climate: Drastically cut global GHG emissions or else face "Dangerous Climate Change"
- Water:
 1.8 billion people will suffer scarcity by 2025
- Food: *Mounting pressures on food security*
- Local & regional environments: Unsustainable footprints in emerging markets (e.g. contamination of air, water & land in Far East, air quality in GCC, ...)

Sources: EIA, UN, IPCC

OPPOSING TRENDS

In future we will need to achieve much more with much less !

Local Challenges – Qatar

TEES Qatar Sustainable Water & Energy Utilization Initiative (QWE)

Directors: Patrick Linke, Ahmed Abdel-Wahab To provide the scientific and technical support needed to achieve the sustainable utilization of water and energy resources in the State of Qatar.

The Qatar Sustainable Water & Energy Utilization Initiative

Current Research Activities

- Advanced water and wastewater treatment processes
 - Advanced reduction processes
 - Advanced oxidation processes
 - Electrochemical and photo-electrochemical treatment processes
- Environmental impact assessment and management
 - Marine discharges
 - Air quality
 - Regulatory revisions and recommendations of new standards

• Desalination Process Innovation

- Zero liquid discharge systems (ZLD)
- Hybrid desalination systems
- Desalination pretreatment
- Utilizing solar energy for carbon dioxide reduction and water treatment
 - Photo-electrochemical processes for CO₂ conversion to useful fuels
 - Photo-electrochemical water and wastewater treatment processes

Current Research Activities (cont.)

- Heat to Power Technologies
 - Organic Rankine Cycles
- Industrial Energy Systems
 - Energy integration in industrial cities
 - Renewable energy / systems integration
- Integrated water resources management
 - Macroscopic water systems design and optimization
- Water-Energy Nexus and Eco-Industrial Parks
 - Integrated water-Energy Systems
 - Industrial ecologies around wastes and by-products, CO₂ integration

Research & outreach

EXAMPLES OF ONGOING RESEARCH

Design Approaches for Sustainable Industrial Systems

Design Approaches for Sustainable Industrial Systems

Optimal waste heat recovery and reuse in industrial zones

Mirko Z. Stijepovic, Patrick Linke*

Department of Chemical Engineering, Texas A&M University at Qatar, Education City PO Box 23874, Doha, Qatar

pubs.acs.org/IECR

Multiperiod Planning of Optimal Industrial City Direct Water Reuse Networks

Sumit Kr. Bishnu,[†] Patrick Linke,^{*,†} Sabla Y. Alnouri,[†] and Mahmoud El-Halwagi[‡]

[†]Department of Chemical Engineering, Texas A&M University at Qatar, P.O. Box 23874, Education City, Doha, Qatar [‡]The Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States

Journal of Cleaner Production 89 (2015) 231-250

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jclepro

A synthesis approach for industrial city water reuse networks considering central and distributed treatment systems

Targeting and design of industrial zone waste heat reuse for combined heat and power generation

Vladimir Z. Stijepovic^b, Patrick Linke^{a,*}, Mirko Z. Stijepovic^a, Mirjana Lj. Kijevčanin^b,

AIChE

Optimal Interplant Water Networks for Industrial Zones: Addressing Interconnectivity Options Through Pipeline Merging

Sabla Y. Alnouri

Dept. of Chemical Engineering, Texas A&M University at Qatar, P.O Box 23874, Education City, Doha, Qatar The Artie McFerrin Dept. of Chemical Engineering, Texas A&M University, College Station, TX

Patrick Linke

Dept. of Chemical Engineering, Texas A&M University at Qatar, P.O Box 23874, Education City, Doha, Qatar

Research Article

pubs.acs.org/journal/ascecg

Water and Energy Issues in Gas-to-Liquid Processes: Assessment and Integration of Different Gas-Reforming Alternatives

Diana Yered Martínez,[†] Arturo Jiménez-Gutiérrez,^{**,†} Patrick Linke,[‡] Kerron J. Gabriel,[§] Mohamed M. B. Noureldin,[§] and Mahmoud M. El-Halwagi^{§,||}

Now moving across nexus and widening scope for carbon dioxide management.

CrossMark

Innovating Organic Rankine Cycles

Solar

Waste heat

Biomass

Geothermal

Computer-Aided Molecular Design + Highperformance Cycle Design & Optimization

Innovating Organic Rankine Cycles

On the systematic design and selection of optimal working fluids for Organic Rankine Cycles

Athanasios I. Papadopoulos ^{a,b}, Mirko Stijepovic ^c, Patrick Linke ^{c,*}

Toward Optimum Working Fluid Mixtures for Organic Rankine Cycles using Molecular Design and Sensitivity Analysis

Athanasios I. Papadopoulos,*^{,†} Mirko Stijepovic,[‡] Patrick Linke,[‡] Panos Seferlis,[§] and Spyros Voutetakis[†]

Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection

Paschalia Mavrou ^{a, b}, Athanasios I. Papadopoulos ^{a, *}, Mirko Z. Stijepovic ^c, Panos Seferlis ^{a, b}, Patrick Linke ^c, Spyros Voutetakis ^a

Applied Thermal Engineering 36 (2012) 406-413

On the role of working fluid properties in Organic Rankine Cycle performance Mirko Z. Stijepovic^a, Patrick Linke^{a,*}, Athanasios I. Papadopoulos^b, Aleksandar S. Grujic^c

	Energy xxx (2014) 1-14	
	Contents lists available at ScienceDirect	ENERDY
	Energy	The second secon
ELSEVIER	journal homepage: www.elsevier.com/locate/energy	Vieweige Vieweige

An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes

Mirko Z. Stijepovic^{a,*}, Athanasios I. Papadopoulos^b, Patrick Linke^a, Aleksandar S. Grujic^c, Panos Seferlis^d

CAMD for WF selection: Pure components & mixtures, Optimal Cycle design & integration, Propertyperformance relationships, Design & selection for dynamic performance

Approaches to Process Design and Optimization

Optimization frameworks and tools for the systematic innovation of processes

Het. catalytic conversions

Desalination processes

Optimal conceptual design of processes with heterogeneous catalytic reactors

Daniel Montolio-Rodriguez^a, Patrick Linke^{a,b,*}, David Linke^c, Mirko Z. Stijepovic^b *Center for Process & Information Systems Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK

Energy Fuels 2010, 24, 1908–1916 · DOI:10.1021/eB01193v energy@fuels

Optimization Approach for Continuous Catalytic Regenerative Reformer Processes

Mirko Z. Stijepovic,*⁺ Patrick Linke,[†] and Mirjana Kijevcanin[‡]
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 37 (2012) 11772-11784
Available online at www.sciencedirect.com
SciVerse ScienceDirect

 ELSEVIER
 journal homepage: www.elsevier.com/locate/he
 Image: com/locate/he

 Toward enhanced hydrogen production in a catalytic naphtha reforming process

Vladimir Stijepovic^a, Patrick Linke^b, Sabla Alnouri^b, Mirjana Kijevcanin^a,

A systematic approach to optimal membrane network synthesis for seawater desalination

Sabla Y. Alnouri, Patrick Linke*

Optimal seawater reverse osmosis network design considering product water boron specifications

Sabla Y. Alnouri, Patrick Linke *

Department of Chemical Engineering, Texas A&M University at Qatar, PO Box 23874, Education City, Doha, Qatar

Grad students: Dhabia Al-Mohannadi, Sumit Binshu, Sabla Alnouri

GHG FOOTPRINT REDUCTION THROUGH CARBON INTEGRATION

"Unequivocal" Increase - IPCC, 2014 "Wake-Up Call" - John Kerry, US Secretary of State, 2014

EXAS A&M

RSITY at OATAR

Ā M

Global target for emission reduction by 2050 required to keep below 2°C increase

- Presidential Climate Action Project

Industrial countries target for emission reduction by 2050 required to keep below 2°C increase - Presidential Climate Action Project

What possibilities exist to reduce industrial carbon footprints ?

Common approaches to industrial carbon footprint reduction

NATURAL GAS & EFFICIENCY – IMPORTANT KEYS TO AN INTERMEDIATE LOW CARBON FUTURE

IEA: Avoiding dangerous Climate Change through abatement of energy-related CO₂ over business as usual scenarios

Global problems vs. local impacts

Main CO₂ Emission Sources

Popular CO₂ Reduction Methods

Ă M

Industrial City Emissions Reduction Options

Previous Work – PSE Approaches

• Carbon capture and storage

How to allocate produced carbon dioxide for efficient footprint reduction ?

Carbon Integration

Multiple Sources Different emission points e.g.

- Process vents
- Natural gas reformers
- Gas turbines
- Steam boilers

Possible Sinks

- Existing
- Newly added

(to store or convert CO2)

- Processing
 - Capture
 - Treatment
- Spatial constraints
 - Source & Sink locations
 - Transportation corridors

Which sources to capture, Which sources to purify, Which sources to mix ,

Which existing sinks to choose, Which new sinks to add, Which captured CO2 to feed to each sink,

... to achieve the lowest cost carbon dioxide footprint reduction ?

Approach

TEXAS A&M UNIVERSITY at QATAR

Ā M

Step 1: Data acquisition for industrial zone

Data about sources

gelio.livejournal.com | gelio@inbox.ru

Step 1: Data acquisition for industrial zone

▸ CO₂ Source Information

Plant	Source	CO ₂ Flow	Composition of CO ₂	Pressure of stream released	Temperature of stream	Location

Spatial information (corridors)

Usual suspects + New emerging options

TEXAS A&M

UNIVERSITY at QATAR

Possible selection criteria

• Maturity

ĀМ

- Level of fixation
- Potential revenue
- Compatibility with existing system
- Geological availability

CO₂ Sink Information

Plant	CO ₂ Flow Capacity	Compositi on of CO ₂ Required	Feed Pressure	Cost of CO ₂ in sink	Efficiency factor of sink	Location

ĀM

TEXAS A&M

at OATAR

Carbon separations

- Efficiency of carbon removal
- Cost of capture

Transmission

- Relative distances
- Pipeline costs
- Compression and pumping costs

Step 4:Identification and design of cost effective carbon integration network

Problem Statement

Given

- An industrial city with a number of plants
- A number of emission streams (sources) of known flow rate, composition, temperature, pressure
- A number of existing/potential processes (sinks) that can receive emissions with known CO₂ capacity, purity requirements, temperature, pressure
- One (or more) carbon separation technology with known performance
- Distances between all sources and all sinks

• Determine

The cost-optimal network the connects sources and sinks within the industrial city for a given carbon footprint reduction

Representation

Representation

Representation

Minimize Total Cost

 Total Cost = Cost of sinks + Cost of treatment + Cost of compression + Cost of pumping + Cost of pipelines

Subject to

- Network mass balances
- Flow and purity constraints
- Net capture requirements
- Mixed Integer Non-Linear Program (MINLP)

Implementation

 "What's Best 12.0" Lindo Global solver for MS-Excel 2010 via a laptop with Intel Core i7 Duo processor, 8 GB RAM and a 32-bit operating System.

MODEL TYPE:

Mixed Integer / Nonlinear (Mixed Integer Nonlinear Program)

SOLUTION STATUS:

GLOBALLY OPTIMAL

Case Study

TEXAS A&M UNIVERSITY at QATAR

Step 1: Data acquisition for industrial zone

TEXAS A&M

Y at OATAR

Ă M

Step 1: Data acquisition for industrial zone

CO2 Source Information

Plant	Source	CO2 Flow, MTPD	Composition of CO2, wt%	P, kPa	Т, К
Ammonia	amine unit	977	100%		
Steel	Iron Mill	3451	44%		
Power	Gas Turbine	9385	7%		
Refinery	Boiler	1092	27%	101 kPa	298 K

TEXAS A&M

at OATAR

ĀM

A M

CO₂ Sink Information

- Enhanced Oil Recovery
- Storage in Saline Aquifers
- Boasting Urea Production
- Methanol Production using Solar Energy
- Microalgae Production
- Greenhouses

Sinks	CO ₂ Composition (wt%)	Flow CO ₂ , MTPD	P, kPa	C ^{sink} _{k,} USD/ton CO ₂ *	η_k
Algae	6	283	101	0	0.42
Greenhouses**	94	1030	101	-5	0.5
Methanol	99.9	1710	8080	-21	0.098
Urea	99.9	1126	14140	-15	0.39
CO ₂ -EOR**	94	2739	15198	-30	0
Saline Storage **	94	8317	15198	8.6	0

Ă M

- *based on information from the IPCC report (Metz et al, 2005), (European Commission, 2007), (Campbell et al 2009), (Bloom et al, 2009), (Van-Dal et al 2013), (Global CSS, 2011) and (Kojima et al, 2008).
- **located out of the city

Negative cost indicates a profit

Carbon removal cost from each source

- Technology of choice: MEA Absorption
- Literature Values

Plant		Source	Estimated C _{si} ^T
	Ammonia Plant	Amine Unit	0
	Steel Plant	Iron Mill	29
	Power Plant	Gas Turbine	43
	Refinery	Boiler	35

• Costs estimation based on Hendrix and Graus (2004) and Rubin et al (2012)

Compression and Pumping Correlations

Capital + Operating Cost

Cost Element	Correlation	source
Capital cost of	$CC^{capital}\left(\frac{\text{USD}}{\text{SD}}\right) = 158,902 \left(\frac{P^{comp}(T_{s,k,t} + U_{s,k})}{2}\right)^{0.84} CRF$	Durao (2008)
compressor	(yr) 224	
Operating cost of	$CC^{operating}\left(\frac{\text{USD}}{\text{ur}}\right) = P^{comp} \cdot (\text{T}_{s,k,t} + \text{U}_{s,k}) * Elec \cdot (\frac{\text{USD}}{\text{ur}}) * (\frac{\text{days}}{\text{ur}}) * 24 h$	
compressor	(yr) kwn (year)	
The overall cost of	$C_{sk}^{Compessor}\left(\frac{\text{USD}}{\text{USD}}\right) = CC^{capital} + CC^{operating}$	
compressor	S, A (yr)	
Capital cost of	$PC^{capital}\left(\frac{\text{USD}}{\text{SD}}\right) = \left[(1.11 * 10^{6} \frac{P^{pump} \cdot (\text{T}_{s,k,t} + \text{U}_{s,k})}{P^{pump} \cdot (\text{T}_{s,k,t} + \text{U}_{s,k})} + 0.07 * 10^{6}) * CRF\right]$	McCollum and Ogden (2006)
pump	(yr) ¹ 1000 , , , ,	
Operating cost of	$PC^{operating}\left(\frac{\text{USD}}{\text{ur}}\right) = 0.8 * P^{pump}.(\text{T}_{s,k,t} + \text{U}_{s,k}) * Elec.\left(\frac{\text{USD}}{\text{ur}}\right) * \left(\frac{\text{days}}{\text{urgr}}\right) * 24 h$	
pump	(yi) (kwii) (yeur)	
Total overall cost	$C_{sk}^{pump}\left(\frac{\text{USD}}{\text{um}}\right) = PC^{capital} + PC^{operating}$	
of pump		
Cost of piping	$C_{sk}^{Pipe} \left(\frac{\text{USD}}{\text{I}} \right) = [95,230 (D^{c}_{sk}) + 96,904] * \text{CRF}$	Parker (2004)
	(mi) [3, k) [2, k) [2, k] [2, k]	

Cost Support Information

- Cost of electricity is 0.02USD/kWh (Qatar Electricity Tariffs, 2014)
- Capital Recovery Factor (CRF) = 0.15
- Distances between sources and sinks

source/sink	Algae	Greenhouse	Storage	Solar	Urea Plant	Enhanced
		S		Methanol		Oil Recovery
Ammonia – amine unit	1.72	25.38	1.51	1.51	1.55	1.56
Steel –Iron Mill	2.07	25.73	I.86	I.86	1.9	1.91
Power-Gas Turbine	2.77	27.33	2.95	2.95	0.91	0.51
Refinery - Boiler	2.53	27.09	2.71	2.71	0.66	0.82

Results and Discussion

10% Capture

40% Capture

Capture Cost per ton CO2 vs. Capture Target

Carbon Dioxide Net Target

Cost Breakdown

Summary

Carbon integration:

Systematic approach to identify low cost carbon management options across multiple sources and multiple sinks using CO2 purification as appropriate

- Focus on industrial parks / cities and interfaces to external CO2 sinks
- Enables exploration of scenarios to inform decision-making

Ongoing Work

- Integration for tightening reduction targets over time
- Carbon & Energy Integration (incl renewables)
- Integrated carbon dioxide separation technology selection

Thank you.

2468

Support from the Qatar Science Leadership Program (QSLP) – QF Research division is gratefully acknowledged (Dhabia Al-Mohannadi)

This work has greatly benefited from knowledge gained in QNRF project NPRP grant no. 4-1191-

Artist: Pawel Kuczynski

Some more slides

Qatar Science Leadership Program (QSLP) –
 QF Research division (Dhabia Al-Mohannadi)

Ongoing Work: Achieving targets over time

Network Rearrangement

Ongoing Work: Carbon & Energy Integration

Ā M

Decisions

Decisions

Connection

compression

Pumping

Source

Sink

http://www.seek.co.nz/

3% Capture

20% Capture

STRONG TRACK RECORD OF RESEARCH WITH INDUSTRY & LOCAL SERVICE

Government	Industry
Emiri Diwan	• Q-Companies: QAFCO, QAPCO, QChem, QVC, QatarGas, RasGas
Ministries Ministry of the Environment Ministry of Development Planning and Statistics Ministry of Economy & Commerce	• Multi-Nationals and Technology: Shell, Maersk, BP, ExxonMobil, Sasol, Chevron, GDF Suez, Mitsubishi Heavy Industries
Qatar Petroleum	 Engineering / Services:

Worley Parsons, URS, Bauer

Main reason for excellent reputation with local stakeholders (besides impact from our graduates)

