"Role of Alternative Aviation Fuels on Reducing the Carbon Footprint"

Kumaran Kannaiyan

Micro scale Thermo-fluids Lab, Mechanical Engineering, TAMUQ

Undergraduate researchers: Ayman Yamine, Mohamed AlAthba

Funded by:

QATAR SCIENCE & **** TECHNOLOGY PARK

&

Dr. Reza Sadr, Associate Professor, Mechanical Engineering, Micro Scale Thermo-Fluids Lab (MSTF), Texas A&M University at Qatar (TAMUQ)

Outline

- Role of alternative aviation fuels
- Introduction
- Collaborative research
- Fuels
- Research at MSTF-TAMUQ
- Takeaways
- Future directions

Aviation Alternative Fuels

- Need for alternative fuels?
 - Diversification / supply security
 - Reduce environmental impact
- Alternative fuels sources?
 - F-T based synthetic fuels (XTL)
 - X- Coal, Gas, Bio
 - Hydroprocessed Renewable Jet Fuel (HRJ) / Hydroprocessed-Ester / Fatty acids (HEFA) – from vegetable oils / animal fats

A M

- Camelina, Jatropa, Algae, Tallow, used cooking oil etc.,
- Direct-Sugar-to-Hydrocarbon
- Alcohols-to-Jet (ATJ)

Aviation Alternative Fuels

Developments / Milestones?

"A total of 21 airlines have now used alternative fuel for commercial flight. This is extremely impressive when just 5 or 6 years ago the entire concept was labeled as <u>hypothetical</u>." - IATA report on Alternative Fuels, 9th Ed., Dec' 2014

Key challenges in developments?

Safety & Sustainability Cost factor Land impact Food-water security

ТЕХА

Ā M

Safety / Environment?

Cold Section

- New fuel has to meet the performance standards of ASTM
- Chemical and physical properties different Combustion -**Atomization** Emissions Fuel-Oxidizer mixing COMBUSTION INTAKE COMPRESSION EXHAUST 000 **Combustion Chambers** Air Inlet Turbine

Micro Scale Thermo-Fluids Lab

Hot Section

source: Internet

Introduction / Motivation

Abundance of Natural gas in Qatar instigated interest in "Gas-to-Liquid (GTL)" fuel as *drop-in* fuel for aviation engines Qatar Science and Technology Park Academia - Industry Consortium Research Combustion Performance Properties **Rolls-Royce** R Å M für Luft- und Raumfahrt eV UNIVERSITY at OATAR in der Helmholtz-Gemeinschaft Shell

Ă M

- > Part-1 : High altitude relight ignition tests at R-R, UK
- Part-2 : Emission tests at R-R, USA
- Part-3 : Combustion studies at DLR, Germany
- Part-4 : Atomization study at TAMUQ, Qatar

GTL Fuels : Shell

Gas-To-Liquid (GTL) : liquid fuel synthesized from Natural gas using Fischer-Tropsch

- Effect of fuel composition on combustion;
 - Carbon range
 - Iso-to-normal paraffin ratio
 - Cyclic content
- Five GTL fuels Shell
 - Two commercial fuels
 Bintulu GTL Malaysia
 Pearl GTL Qatar
 - Three blends: (Bintulu + "ShellSol")
- Reference fuel: Conventional "Jet A-1"

Fuel properties: Shell

Properties @ 20°C	Blend-1	Bintulu	Blend-3	Blend-2	Pearl	Jet A-1	
		(CSPK 1)			(CSPK 2)		
Density (kg/m³)	746	738	751	763	749	790	
Viscosity (mm²/s)	1.36	1.37	1.46	1.60	1.55	1.68	
Surface tension (mN/m)	23.8	23.5	24.1	24.2	23.9	26.8	
H/C ratio (measured)	2.2	2.3	2.2	2.2	2.2	1.92	
Iso-paraffins (% Wt)	73.3	55.7	48.4	58.1	64.8	NA	
Normal paraffins (% Wt)	26.0	43.4	36.5	26.7	29.8	NA	
Iso-to-normal paraffin ratio	3.3	1.6	1.5	2.4	2.5	NA	
Naphthenes (% Wt)	0.4	0.5	15.4	15.6	5.4	NA	
Carbon Cut Narrow (C7-C13) / Wide (C7-C16)	Narrow	Narrow	Narrow	Wide	Wide	NA	
Distillation Characteristics (°C)							
T50 - T10	8.4	16.6	8.4	10	9.4	28.5	
T90 - T10	20.7	22.5	21.2	27.5	28.7	68.3	

Calorific value (LHV as per D4809 standard) : 43.3 ~ 44.2 MJ/kg

Part-1: Relight Ignition

⁽RR-UK, DLR-Germany, TAMUQ-Qatar)

- High altitude relight ignition tests
- Sub-atmospheric combustion rig <u>Rolls-Royce</u>, <u>Derby-UK</u>
- Limits of ignition boundary tested at two combustion inlet air pressures

(Rolls-Royce-UK facility equipped with DLR diagnostics)

Combustor air mass flow rate

Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air, June 6-10, 2011, Vancouver, Canada:

- Darren et al., (2011), GT2011-45487
- Thomas et al., (2011), GT2011-45510

Part-2: Emission Tests

(RR-UK, RR-US, TAMUQ-Qatar)

- > Emission characteristics : NO_x , CO, CO₂, UHC, and smoke number
- IP Combustion chamber facility at <u>RR-Indianapolis</u>, USA
- Test conditions represent different stages of aircraft engine cycle ICAO standards
- Both Main & pilot-scale nozzles were used in emission tests

Emission Tests Outcome:

- At a given combustor operating condition, GTL produced less smoke than Jet A-1
- Under some cases, GTL produced more NOx than Jet A-1 fuel
- Further studies are necessary to gain more insights

Part-3: Combustion studies TEXAS UNIVERSITY a

(DLR-Germany, TAMUQ-Qatar)

Laminar flame speed measurements at atmospheric conditions

(Atmospheric-Laminar flame speed facility, DLR)

- Ignition delay measurements: Shock tube
- Surrogate chemical kinetics GTL fuel

- Kick et al., Energy 43 (1), 111-123, 2012

- Slavinskaya et al., "Surrogate Model Design for GTL Kerosene", *50th AIAA Aerospace Sciences Meeting and Exhibit*, Tennessee, USA, 9-12 Jan, AIAA-2012-0977.

Part-4: Sprays Characteristics @

Need for spray characteristics?

- Change in physical properties, viscosity, density and surface tension affects the fuel "atomization" characteristics
- > Atomization \rightarrow fuel-air mixture \rightarrow Combustion \rightarrow Emissions

GSV Technique

- Fringe spacing is most "insensitive" to refractive index at 60° (Pan et al. 2005)
- Light scattered by the droplets exhibit angular oscillations (fringes)
- Droplet size is proportional to the fringe spacing (Pan et al. 2005)

Droplet size measurement limits*

 $27\mu m < d < 2mm$

* Limits vary with,

- camera resolution, defocus distance, Magnification, Aperture size

Lorenz-Mie scattering theory

Out-of-focus image (Ragucci et al. 1990)

Flow **J** direction

Ā M

Imaging details

- 200 image pairs (2Hz frame rate)
- 1600x1200/ binning (2x2)
- defocus distance: 135 mm
- Aperture number: 4

PDA Technique

- 2-D PDA system
- $\succ \lambda = 514$ nm (axial) and

488nm (radial)

- Diameter Doppler burst phase shift
- Velocity Doppler burst frequency

Courtesy: Dantec Dynamics

Transmitter and receiver probe arrangement

- > Receiver probe is positioned at $42^{\circ}(\phi)$
- Data sampling: 10,000 samples or 15s
- Results presented are an average of three best trials
- Validation: Diameter (60-80%)
 Velocity (80-90%)

Experimental Facility

- Three modules Pump, Spray and Optics
- High pressure fuel supply loop
- Nozzle supplied by RR-UK is mounted on a traversing system
- Injection pressure is measured just upstream of the nozzle
- GSV & PDA systems are integrated to the facility

Spray Chamber Spray & Optics Module Vapor extract Fuel Nozzle CCD Camera PDA transmitter PDA System Photo multiplier

Micro Scale Thermo-Fluids Lab

Experiment Details

- Inert (N₂) ambiance at atmospheric condition (101325Pa and 298K)
- Pilot-scale pressure-swirl nozzle:
 Fuel injection pressures are 0.3,
 0.6, and 0.9 MPa (SD ±3%)
- Injection pressures are chosen based on RR-UK suggestions

- Spray is symmetric and measurements are carried out only on one side of the spray
- The field of view for GSV is decided based on the facility dimensions, camera lens capability. Radial direction is covered in two steps

GSV: Size Distribution at NS1 INIVERSITY at QATAR

- The difference in size distribution beyond 300 µm is insignificant among the fuels and not shown
- However, full diameter range is used to calculate Sauter Mean Diameter (SMD)
- Increase in injection pressure slightly increases the number of smaller droplets as expected
- Example and Sadr, ICLASS, 2012]

 Example and Sprays, 24 (7), 575-597, 2014]

GSV: Size Distribution at NS2 In Itexas A&M UNIVERSITY at QATAR

- Size distributions trends at NS2 are similar to that in NS1
- The probability is slightly higher at NS2 than NS1
- Mean droplet diameters (d₁₀ and d₃₂) decrease with an increase in injection pressure as expected
- The mean diameter trends are consistent with those of the size distributions
 [Kumara

[Kumaran & Sadr, *ICLASS*, 2012] [Kumaran & Sadr, *Atomization and Sprays*, 24 (7), 575-597, 2014]

PDA Measurement Points

User Settings				
Photomultiplier Voltage (PMV)	1200 V			
Signal Gain (SG)	24 dB			
Signal-to-Noise ratio (SNR)	-2.0 dB			

Micro Scale Thermo-Fluids Lab

Normalized Data Rate

Only CSPK 1 & Jet A-1 are shown as they show maximum difference in their fuel properties

- Data rate at last measurement location is less than 3% of the maximum value at that axial location
- Lower values of viscosity and surface tension for CSPK 1: faster disintegration and dispersion of droplets when compared to that in Jet A-1 fuel

Sauter Mean Diameter (d₃₂)

- SMD increases with increase in radial distance for all the fuels as expected in a pressure-swirl nozzle
- CSPK 2 and Jet A-1 trends are similar as their fuel properties are narrowly separated
 [Kumaran & Sadr, Ener.Conv.Mang., 88, 1060-1069, 2014]

Micro Scale Thermo-Fluids Lab

ТЕХА

ĀM

Spatial distribution

Micro Scale Thermo-Fluids Lab

GTL vs Jet A-1

- Better ignition limits at high altitude conditions
- ✓ Better smoke performance

More NO_x emissions than Jet A-1

- ✓ Laminar flame speeds are slightly higher
- Overall spray characteristics are similar at atmospheric conditions

- Essential to study spray characteristics at actual combustor conditions

Spray Characteristics

every drop counts! ©

Micro Scale Thermo-Fluids Lab

Micro Scale Thermo-Fluids Lab

Acknowledgement

- Rolls Royce, UK
 - Mr. John Moran, Combustion Specialist
- DLR, Germany team
 - Dr. Patrick LeClercq
 - Dr. Thomas Mosbach
- Shell (UK & Qatar) team
 - Dr. Joanna Bauldreay, (UK)
 - Mr. Ali M. Al-Sharshani, (QSRTC)
- late Prof. Chris Wilson, University of Sheffield
- Dr. Mahesh Panchagnula, Indian Institute of Technology Madras (IITM)

Thank You!

References

- J. M. Bauldreay, P. F Bogers and A. Al-Sharshani, (2011) "Use of surrogate blends to explore combustion-composition links for synthetic paraffinic kerosines", 12th International conference on stability, handling and use of liquid fuels, Florida, 16-20 October.
- Kumaran Kannaiyan and Reza Sadr, (2014) "Experimental investigation of spray characteristics of alternative aviation fuels", *Energy Conversion and Management*, 88, pp. 1060-1069.
- Kumaran Kannaiyan and Reza Sadr, (2014) "Effect of fuel properties on spray characteristics of alternative jet fuels using Global Sizing Velocimetry", *Atomization and Sprays*, 24 (7), pp. 575-597.
- Kumaran Kannaiyan and Reza Sadr, (2014) "Experimental study of the effect of fuel properties on Spray performance of alternative jet fuel", *Proceedings of ASME Turbo Expo 2014*, Vol. 3A, June 16-20, 2014, Dusseldorf, Germany, GT2014-25842.
- Kumaran Kannaiyan and Reza Sadr, (2013) "Spray Characteristics of Fischer-Tropsch Alternate Jet Fuels", *Proceedings of ASME Turbo Expo 2013: Power for Land, Sea and Air*, Vol.2, June 3-7, 2013, San Antanio, Texas, USA, GT2013-95761.
- Kumaran Kannaiyan and Reza Sadr, (2012) "Spray Characterization of Gas-to-Liquid Synthetic Aviation Fuels", 12th Triennial International conference on Liquid Atomization and Spray Systems (12th ICLASS), Heidelberg, Germany, September 2-6. (ISBN 978-88-903712-1-9)

Mean Droplet Diameter (d₁₀)

Compared across fuels at,

Sauter Mean Diameter (d₃₂)

Compared across fuels at,

TEXA

UNIVERSIT

Ă M

Verification

- Mono-disperse droplet generator (MDG) produces droplet diameters of known size
- Water is used to generate droplet diameters of known size
- GSV, PDA and expected diameters are within 10% agreement

Micro Scale Thermo-Fluids Lab

GSV Measurement Region TEXAS A&M UNIVERSITY at QATAR

Micro Scale Thermo-Fluids Lab

SMD Comparison

Estimated SMD using Lefebrve's (1987) empirical relation for Simplex nozzle, $SMD = 2.25. \sigma^{0.25}. \mu_l^{0.25}. \dot{m_l}^{0.25}. \Delta P_l^{-0.5}. \rho_a^{-0.25}$

<u>GSV</u>

The SMD determined using GSV data is found to be <u>higher</u> than the estimated value by a maximum of 26% and 48% for 0.3MPa and 0.9MPa, respectively

<u>PDA</u>

- Droplet diameters that are collected within a common time window across all radial locations at a given axial location are used for global SMD calculation.
- Global SMD is found to be <u>lower</u> than the estimated SMD by a maximum of 28% and 16% for 0.3MPa and 0.9MPa, respectively

Imarar	<u>א</u> ר	Sadr	ASME	Turbo	Expo	2013	GT20	13-9576	11

Ā M

Injection	SMD, µm (GSV)				
pressure	CSPK 1	CSPK 2	Jet A-1		
0.3MPa	155	164	151		
0.9MPa	136	138	145		

Injection	SMD , μm (PDA)			
pressure	CSPK 1	CSPK 2	Jet A-1	
0.3MPa	96	98	95	
0.9MPa	81	83	82	

Mean Droplet Diameter (d₁₀)

Overall shape and trends are similar between the fuels.

Typical standard deviation is shown as error bars only at two axial locations to facilitate the comparison

[Kumaran & Sadr, ASME Turbo Expo 2014, GT2014-25842]

Micro Scale Thermo-Fluids Lab

Mean Droplet Velocity

Fuel with lower viscosity and density (CSPK 1) exhibits higher droplet mean axial velocity

Trends are inline with those observed for the data rate

[Kumaran & Sadr, Ener.Conv.Mang., 88, 1060-1069, 2014]