

Synthetic Fuel Formulation from Natural Gas via GTL: A Synopsis and the Path Forward

Elfatih Elmalik^{1,2}, Iqbal Mujtaba¹, Nimir Elbashir² ¹ University of Bradford, UK ² Texas A&M University at Qatar

Water & Energy Workshop

Monday February 16th 2015 Hamad Bin Khalifa University, Doha, Qatar

CHEMICAL ENGINEERING PROGRAM

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

World Energy: Production

Total Primary Energy Supply*: 13,371 Mtoe

Source: International Energy Agency, Key World Energy Statistics 2014

ĀМ

TEXA

UNIVERSITY at QATAR

World Energy: Consumption

Total Energy Consumption: 8,979 Mtoe

World Energy: Refinery Products

Total Refinery Production: 3,905 Mt

World Energy: Difficulties

Global energy consumption is only 66% of the TPES.

- Transportation fuels account for more than 70% of refinery output worldwide.
- Gas-to-Liquids (GTL) products are currently grouped together with coal liquefaction plants, diminishing their true impact.

World Energy: Oil Consumption

ĀМ

UNIVERSITY at QATAR

CHEMICAL ENGINEERING PROGRAM

World Energy: Gas Consumption

Total Gas Consumption: 1,366 Mtoe

CHEMICAL ENGINEERING PROGRAM

Natural Gas Utilization

About $\frac{2}{3}$ of oil products are used for transportation vs less than $\frac{1}{10}$ of Natural Gas.

- Opportunity for GTL products to tap into that large slice.
- Almost half of the Natural Gas utilization is towards agriculture, commercial, residential and public services. Alternative energy resources will free that portion for innovative processing.

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Carbon Footprint

11

Ā M

UNIVERSITY at QATAR

S. Blakey et al. | Proceedings of the Combustion Institute 33 (2011) 2863-2885

Fig. 12. CO₂ equivalent lifecycle data for a range of conventional and alternative fuels. [40–43,46].

Cleaner Skies

In 2013, Qatar Airways makes 1st journey from Doha to London utilizing locally produced GTL fuel from the Pearl plant.

QATAR

QATAR SCIENCE & **** TECHNOLOGY PARK

AIRBUS

Combustion Testing

Performance Review

The University Of Sheffield.

Consortium

TEXAS A&M

UNIVERSITY at QATAR

A M

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Overview of TAMUQ Fuel Characterization Lab

Built a world class research lab to support the development of the Fuel Technology Capabilities of Qatar for Gas-to-Liquid (GTL) processes.

UNIVERSITY at QATAR

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges the Jet Fuel case
- Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Hydrocarbon Groups

Ā M

UNIVERSITY at QATAR

CHEMICAL ENGINEERING PROGRAM

Building Blocks

A M

TEXA

S

UNIVERSITY at QATAR

M

Hydrocarbon		Density (g/mL)	Freezing Point (°C)	Boiling Poir (°C)	nt Flash (°(Point C)	Net Heat
(n-) Octane	Figure 4.4 Table from Chevron's Aviation Fuels Technical Review Potential Contribution* of Each Hydrocarbon Class to Selected Jet Fuel Properties						
(n-) Decane	(For hydrocarbons in the jet fuel carbon number range)						
(n-) Undecan	Jet Fuel P	roperty	n-Paraffin Iso	paraffin Napł	ss 1thene Aro	matic	+
(n-) Hexadeca	Energy co Gravime	ntent: tric	+	+	0	_	+
(Cyclo-) Deca	Volumet	ric op.guolity	-	-	0	+	-
(Ar-) Toluene	Low-temperature fluidity			0/+	+	0/-	-
(Ar-) P-Xylene "+" indicates a beneficial effect, "0" a neutral or minor effect, and "-" a detrimental effect							
(Cyclo Ar-) Tetralin 970		-35.8	206	77	7		
(Di Ar-) Naphthalene		1140	80.26	218	87	7	

ASTM D1655 & D7566

TABLE A1.1 Detailed Batch Requirements; Fischer–Tropsch Hydroprocessed SPK ^A						
	Property		FT-SPK	ASTM Test Method ^B	athod ^B	
COMPOSITION	COMPOSITION					
Acidity, total mg K	Acidity, total mg KOH/g	Max	0.015	D3242		
2 Aromatics, vol 9	, iolaily, total high totag		0.010	20212		
Sulfur, mercaptan,	VOLATILITY					
Sulfur, total mass	Distillation-both of the following requirements shall be met:				, D4294, or D5453	
VOLATILITY	1. Physical Distillation			D86 ^C		
Distillation tempera	Distillation temperature. °C:					
10 % recovered,	10 % recovered, temperature (T10)	Max	205			
90 % recovered	50 % recovered, temperature (T50)		report			
Final boiling poir	90 % recovered, temperature (T90)		report			
Distillation residue	Final boiling point, temperature	Max	300			
Distillation loss, %	T90-T10, °C	Min	22			
Flash point, °C	Distillation residue, %	Max	1.5		G	
Density at 15°C, k	Distillation loss, %	Max	1.5		52	
FLOIDITT Freezing point °C	2. Simulated Distillation			D2887	D7154 or D2386	
Treezing point, o	Distillation temperature, °C:				, 27104, 01 22000	
Viscosity –20°C, m	10 % recovered, temperature (T10)		report			
COMBUSTION	50 % recovered, temperature (T50)		report			
Net heat of combu	90 % recovered, temperature (T90)		report		, or D4809	
One of the followir	Final boiling point, temperature		report			
(1) Smoke point	3 F , F					
(2) Smoke point	Flash point. °C	Min	38 ^D	D56 or D3828 ^E		
Naphthalene	Density at 15°C, kg/m ³		730 to 770	D1298 or D4052		
CORROSION	Freezing point. °C	Max	-40	D5972, D7153, D7154, or D23	86	
Copper strip, 2 h a	51					
THERMAL STABIL	Thermal Stability (2.5 h at control temperature)					
(2.5 h at control te	Temperature. °C	Min	325 ^F	D3241		
Filter pressure d	Filter pressure drop, mm Ha	Max	25 ^G	20211		
Tube deposi	Tube deposit rating less than	THUR A	3 ^H			
CONTAMINANTS	Tabe deposit fating loop that		No peacock or			
Existent gum, mg/			abnormal color deposits			
Microseparometer,						
Without electrica	ADDITIVES					
ADDITIVES	Antioxidants, ma/L ¹	Min	17			
Electrical conducti	· · · · · · · · · · · · · · · · · · ·	Max	24			

CHEMICAL ENGINEERING PROGRAM

A M

Property Interlinks

Courtesy of Dr. John Moran from Rolls-Royce

UNIVERSITY at QATAR

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- > Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Hydrocarbon Groups

Species & carbon number distribution in a conventional jet fuel (Jet A-1) versus a GTL Synthetic Paraffinic Kerosene (SPK).

*GCxGC data provided by Shell

AM

The Blends were made using 3 pure solvents, representing three paraffinic composition classes:

normal-paraffin: *n*-decane *iso*-paraffin: Sol-T *cyclo*-paraffin: Decalin

However, initially some blends were made using other solvents such as (D60, D70, DSC, SPK). Unlike the pure solvents these have a broad carbon spread. Terminology:

Pure Axis Blends:

All blends made using only pure solvents on ends of axis (i.e. *n*-decane)

Mixed Solvent Blends:

Certain blends were made with mixed solvents (i.e D60)

Solvent	Composition (%)			Carbon Bango	Main Carbon	
	<i>n</i> -paraffin	<i>i</i> -paraffin	<i>cyclo</i> -paraffin	Carbon Kange	Number	
SPK	43.4	55.7	0.84	8 - 13	10 (41%)	Broad cut
D-60	23.52	26.74	49.74	10 - 14	11 (55%)	
D-70	24.5	27.83	47.68	10 - 16	12 (27%)	Narrow cut
DSC	24.88	29.21	45.91	10 – 13	11 (75%)	

Experimental

DSC

Sol T

UNIVERSITY at QATAR

Decalin

GTL Kero (SPK)

D-60

Objectives:

- To develop correlation between the property and the hydrocarbon structure
- *n*-Decane
 Blending of SPK with conventional fuels & solvents to alter its physical properties

ASTM D1655 Property Limits

Property	Min	Max
Density (g/L)	775	840
Flash Point (°C)	38	-
Freezing Point (°C)	-	-47
Viscosity @ (cSt)	-	8
Heat Content (MJ/Kg)	42.8	-

Blend Formulation

• 21 Blends were formulated, chosen compositions were to provide a large spread across the ternary diagram:

Initial Assessment

<u>Density Results</u>

- Strongly linear results observed
- Density strongly effected by the cyclo-paraffin composition
- normal- and iso- paraffins have low densities, less than the aviation requirements

When including blends made with other solvents:

- Linear results still observed
- No significant changes to the results
- Indicates that the density is not strongly influenced by carbon number

- Flash Point Results
 - Relatively linear results observed
 - All of points meet the target flash point of 38 °C

- Carbon number influence of the different solvents is notable
- The SPK sample has a lower flash point than the pure axis blends

Experimental - Heat Content

- <u>Heat Content Results</u>
 - Mainly Linear Results observed
 - Along the *iso*-paraffin axis there appears to some non-linearity
 - All areas meet the jet fuel limits for heat content

• The results remain relatively the same with the inclusion of the mixed solvent data

46

45.5

45

44.5

44

43.5

43

42.5

42

0

 This indicates that heat content is not greatly effected by the carbon number, but more so by the structure

- The use of other solvents causes significant changes in the freezing point
- This indicates that carbon number may have a larger influence on the freezing point than previously discussed

A M

UNIVERSITY at QATAR

CHEMICAL ENGINEERING PROGRAM

Ă M

TEXAS A&M

UNIVERSITY at QATAR

33

TEXAS A&M UNIVERSITY at QATAR

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- > Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Artificial Neural Network

- Neural network analysis is used to develop a link between input and output values.
- In this study the input values are the 3 compositions, and the output values are the properties.
- The network developed was trained using the results from experimental data.
- The network was able to make strong linkages between the inputs and outputs for most of the properties.

Results - Density

Experimental Results

Neural Network Results

Density Results: ANN shows excellent predictability

CHEMICAL ENGINEERING PROGRAM

Experimental Results

Neural Network Results

Freezing Results: ANN shows excellent predictability

freezingpoint

CHEMICAL ENGINEERING PROGRAM

Visualization

3-D visualization supports two types of analysis:

Surface or area analysis (2-D analysis of the four surfaces of the pyramid)

Depth or volumetric analysis (3-D analysis or "slices" within the pyramid)

Both are unique analysis tools, with the 3-D pyramid being crucial in incorporating extra inputs.

3-D Visualization

CHEMICAL ENGINEERING PROGRAM

Outline

- Introduction: World Energy
- Local Efforts: "Qatar Consortium"
- Fuel Characterization Laboratory
- Synthetic Fuel Challenges
- Approach & Methodology
 - Experimental
 - Computational
- Summary & The Path Forward

Summary

- It has been empirically demonstrated that it is possible to predict key physical properties of a fuel, given its building blocks.
- For the lab scale, replacement or swapping of certain molecular structures with carbon length is a viable option in order to boost certain properties or lower the negative impact of others.
- The visualization techniques developed make it easier to isolate regions of interest for a given blend.

Future Work

- The methodology and the programing developed as the outcome of this contentious research is being extended to look at different synthetic fuel compositions of different carbon numbers (Gasoline & Diesel fractions).
- Collaborations with centers of computational expertise (DTU, TAMU) are yielding good early results in terms of fuel property predictions.
- TAMUQ FCL is actively engaged in database building and archiving for various fuel cuts, blending compounds, and additives.

Acknowledgements

Dr. Nimir Elbashir

Prof. Iqbal Mujtaba

Mr. Mansoor Al-Shamri

Funding:

Thank you for your attention!

Questions?

CHEMICAL ENGINEERING PROGRAM

336F Texas A&M Engineering Building **Education City** PO Box 23874 Doha, Qatar

> Tel. +974.4423.0017 Fax +974,4423,0065

chen@qatar.tamu.edu

http://chen.qatar.tamu.edu

Ă M

UNIVERSITY at QATAR

