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 Research focuses on the design, development, validation and application 
of state-of-the art models for the prediction of structure and physical 
properties of complex chemical systems that are of interest: 
◦ to oil & gas and chemical industry, 

◦ to the protection of natural environment, 

◦ and to the society, at large.  

 Our models span a broad range of time and length 
scales, including: 
◦ sub-molecular calculations using quantum mechanics techniques, 

◦ molecular simulations using Molecular Dynamics and 
Metropolis Monte Carlo methods, and

◦ macroscopic engineering models such as equations of state 
rooted to Statistical Mechanics.
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Our experimental set-up
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From: P. Ungerer et al., Applications of Molecular 
Simulation in the Oil and Gas Industry, IFP (2005)
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 Single phase equilibrium properties:

◦ Density, isothermal / isobaric compressibility (0.1 – 0.5 %), 

◦ Gibbs free energy, Helmholtz free energy, activity coefficient(s) (1 – 5 %),

◦ Heat capacities, other derivative properties (i.e. Joule-Thompson coefficient) (5 - 10 %).

 Transport properties:

◦ Viscosity (1 – 5 %),

◦ Diffusion coefficient (5 – 10 %),

◦ Thermal conductivity (5 – 10 %). 

 Phase equilibria:

◦ Vapor – liquid equilibria (1 – 5 %),

◦ Liquid – liquid equilibria (1 – 5 %),

◦ Vapor – liquid – liquid equilibria,

◦ Solid – fluid (vapor / liquid) equilibria, 

◦ Partition coefficients (1 – 5 %).

 Consistent predictions / correlations over a wide range of temperature and pressure 
conditions is often desirable. 
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Computing power continuous to rise …

PERFORMANCE OF TOP SUPERCOMPUTERS

Source: www.top500.org
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Atomistic MD Simulations of CO2 Diffusivity in H2O for a Wide Range of 
Temperatures and Pressures

Key role of H2O – CO2 mixtures for Carbon Capture and Sequestration

CO2 is typically captured from fossil
fuel burning power plants, steel
and iron manufacturing plants and
other chemical plants or other
CO2-intensive industries and
transported to a storage site.

The CO2 stream is stored in
geological repositories, such as
deep saline aquifers, coal beds or
hydrocarbon reservoirs.

Accurate knowledge of transport is
necessary for the design of CCS
processes.
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Atomistic MD Simulations of CO2 Diffusivity in H2O for a Wide Range of 
Temperatures and Pressures

Model and methods

Water
• SPC
• SPC/E
• TIP4P/2005

Carbon dioxide
• EPM2
• TraPPE

Force-fields used 
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the diffusion coefficient for each state point was
calculated from 12 different simulations, each
one starting from a completely different initial
configuration

• 5 ns NVE runs on 16 cores
• LAMMPS and GROMACS 

simulators used
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Atomistic MD Simulations of CO2 Diffusivity in H2O for a Wide Range of 
Temperatures and Pressures

Temperature dependence and accuracy of various force-fields

• Diffusivity increases with temperature
• All models can predict this behavior qualitatively
• Low T (up to 323 K): TIP4P/2005 – EPM2 combination performs better (less than 2% 

deviations from the experimental values)
• Higher T (over 323 K): SPC/E – TraPPE combination becomes the most accurate
• Combinations with SPC water overpredicts the diffusivity by approximately 90%  

0.1 MPa

Moultos et al., J. Phys. Chem. B, 118, 5532 (2014)
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Atomistic MD Simulations of CO2 Diffusivity in H2O for a Wide Range of 
Temperatures and Pressures

Pressure effect is different at low and high temperatures

Low temperatures High temperatures

473.15 K

523.15 K

623.15 K

623.15 K

523.15 K

473.15 K
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Atomistic MD Simulations of CO2 Diffusivity in H2O for a Wide Range of 
Temperatures and Pressures

Phenomenological model development

𝐷𝐶𝑂2 = 𝐷0
T

Ts
− 1

m

Power-law equation for the correlation of the 
diffusivity results (Do, Ts and m are parameters)

T (K) D0 (10-9 m2s-1) m Ts (K)

MD: SPC/E–TraPPE 298.15 –

478.15

14.800 1.628 227.0

MD: TIP4/2005–EPM2 298.15 –

478.15

13.946 1.808 227.0

MD: Geochim. Cosmochim.

Acta 2011, 75, 2483

273.0 – 373.0 14.684 1.997 217.2

Exp.: Geochim. Cosmochim.

Acta 2013, 115, 183

268.15 –

473.15

13.942 1.709 227.0

Exp.: J. Chem. Eng. Data

2013, In press

298.15 –

423.15

15.922 1.690 227.0

Moultos et al., J. Phys. Chem. B, 118, 5532 (2014)
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Atomistic MD Simulations of H2O Diffusivity in CO2 for a Wide Range of 
Temperatures and Pressures

Excellent agreement between experimental data and MD predictions

Subcritical CO2

Supercritical CO2

H2O diffusion coefficient in CO2 CO2 density
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Atomistic MD Simulations of Mutual H2O – CO2 Diffusion Coefficients at 
high Temperatures and Pressures

Reliable predictions in the absence of experimental data

Diffusion coefficient of CO2 in H2O
Diffusion coefficient of H2O in CO2 

(no expt. data above 308 K)

New correlation that fits accurately all MD data:   𝐷𝑠𝑜𝑙𝑢𝑡𝑒
𝑆𝐴 = 𝐷0 𝑃

𝑇

227
− 1

𝑚 𝑃

Correlations based 
on ambient 
pressure and low 
temperature data

Expt. data 
(Geochim. 
Cosmochim. 
Acta, 2004)

Moultos et al., to be submitted (2015). 
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 Simultaneous Monte Carlo 

simulation of the two phases 

(two boxes, no interface). 

 By keeping the temperature, 

total number of molecules and 

total volume constant (Gibbs-

NVT simulation), the following 

moves are allowed:

– Particle displacement,

– Volume fluctuation of each 

box,

– Particle transfer from one 

phase to the other.

 Applicable to pure component 

and multicomponent mixtures.

Panagiotopoulos, Mol. Phys. 61, 813 (1987)
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Errington et al., J. Phys. Chem. B 102, 8865 (1998)
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CO2 – H2O mutual solubilities
Expt data (lines) and GEMC simulations (points) 

CO2 solubility in H2O H2O solubility in CO2

Orozco et al., J. Phys. Chem. B 118, 11504 (2014)
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USGS website, The U.S. Geological 

Survey Gas Hydrates Project, 

http://woodshole.er.usgs.gov/project-

pages/hydrates/primer.html

 Ice-like materials that belong to the category of 
inclusion compounds. 

 Solid network of hydrogen bonded water molecules 
that form cavities encaging various “guest” molecules. 

 Structures are only stable at relatively high pressure, 
low temperature and in the presence of guest 
molecules.

 More than 100 different molecules are known  to be 
hydrate formers.

 There are 3 common crystalline structures of 
hydrates, namely sI, sII and sH which differ in their 
crystallographic details and in the size and ratio of 
cavities.
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Molecular Dynamics of Hydrate Systems

MD requires the accurate knowledge of:

I. the molecular structure

II. the intramolecular and intermolecular interaction potentials 

III. the crystal lattice constants of the hydrate structure (from XRD)

3.6 nm
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Direct Phase Coexistence Methodology for 
Phase Equilibria Calculation

 Hydrate - Liquid water - Vapor guest 
(methane) equilibria.

 Gibb’s phase rule: For a binary 
system existing in 3 phases there is 
only 1 degree of freedom.
 By fixing the pressure there exists only 

one three phase coexistence temperature 
(T3).

 At a given pressure, starting with a 
three phase system and by scanning 
the temperature the equilibrium 
temperature can be found.
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Direct Phase Coexistence Methodology for 
Phase Equilibria Calculation

 Hydrate - Liquid water - Vapor guest 
(methane) equilibria.

 Gibb’s phase rule: For a binary 
system existing in 3 phases there is 
only 1 degree of freedom.
 By fixing the pressure there exists only 

one three phase coexistence temperature 
(T3).

 At a given pressure, starting with a 
three phase system and by scanning 
the temperature the equilibrium 
temperature can be found.
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 Close to equilibrium temperature (~± 4K) the system can either 
melt or form hydrate. 

 Severe problem in the determination of T3 if only one run is 
used. 

 It necessitates a statistical averaging of a non-trivial number of 
independent simulations.

Stochastic nature of hydrate growth and dissociation

T3=280 K

T3=286 K

or
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 Example of statistical averaging at P=100 bar

 Expected value T3= 282.8 K

 Prediction T3 = 283.8 ±2.1 K

Stochastic nature of hydrate formation

g: growth 
d: dissociation

T (K) No. 1 No. 2 No. 3 No. 4 No. 5

279 g g g g g

281 g g g g d

283 g g d d d

285 g d d d d

287 d d d d d

T3 (K) 286 284 282 282 280
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Predicted 3-phase equilibrium temperature

• V.K. Michalis et al., J. Chem. 
Phys., 142, 044501 (2015).

• M. M. Conde and C. Vega, J. 
Chem. Phys., 133, 064507 
(2010).

• Y. T. Tung, et al., J. Phys. 
Chem. B, 114, 10804 (2010).

• L. Jensen et al., J. Phys. 
Chem. B, 114, 5775 (2010).

• G. S. Smirnov and V. V. 
Stegailov, J. Chem. Phys., 136, 
044523 (2012).
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 Molecular simulation is a powerful computational tool for 
chemical process and product design. 

 It can provide reliable prediction of physical properties in 
the absence of experimental data. 

 Accurate atomistic force fields are required for the 
calculation of inter- and intramolecular interactions (very 
time consuming process).

 Molecular simulation data can be used to tune equations of 
state and other empirical engineering models. 

 As computational resources increase, we can tackle more 
challenging physical problems and can develop more 
detailed representation of the nature.  

Conclusions
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Post-docs / Visiting researchers

 Dr. Vasileios K. Michalis (Hydrates)

 Dr. Othonas A. Moultos (H2O – CO2)

 Dr. Ioannis N. Tsimpanogiannis (both)

M.Sc. students

 Joseph Costandy (Hydrates studies with MD)

 Sally El-Meragawi (Hydrates studies with EoS)

Long-term collaborator

 Prof. Athanassios Z. Panagiotopoulos, Princeton University.
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