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Molecular Thermodynamics and Simulation Laboratory at TAMUQ

» Research focuses on the design, development, validation and application
of state-of-the art models for the prediction of structure and physical

properties of complex chemical systems that are of interest:
> to oil & gas and chemical industry,

> to the protection of natural environment, Our experimental set-up
> and to the society, at large.
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» Our models span a broad range of time and length
scales, including:

> sub-molecular calculations using quantum mechanics techniques,

> molecular simulations using Molecular Dynamics and
Metropolis Monte Carlo methods, and

° macroscopic engineering models such as equations of state
rooted to Statistical Mechanics.
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Hierarchical multi-scale process modeling
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The Nobel Prize in Chemistry 2013
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Molecular Dynamics vs. Monte Carlo simulation

Monte Carlo

Occurrence of configuration i ~ exp(— Uy/kT)
i.e. Boltzmann distribution of energies
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From: P. Ungerer et al., Applications of Molecular
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Physical properties needed in oil & gas industry
for process design

(uncertainty in molecular simulation values in parenthesis)
Single phase equilibrium properties:
> Density, isothermal / isobaric compressibility (0.1 — 0.5 %),
> Gibbs free energy, Helmholtz free energy, activity coefficient(s) (1 — 5 %),
o Heat capacities, other derivative properties (i.e. Joule-Thompson coefficient) (5 - 10 %).
Transport properties:
> Viscosity (1 —5 %),
o Diffusion coefficient (5 — 10 %),
o Thermal conductivity (5 — 10 %).
Phase equilibria:
> Vapor — liquid equilibria (1 — 5 %),
Liquid — liquid equilibria (1 -5 %),
Vapor —liquid — liquid equilibria,
Solid — fluid (vapor / liquid) equilibria,
Partition coefficients (1 — 5 %).
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Consistent predictions / correlations over a wide range of temperature and pressure
conditions is often desirable.
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Computing power continuous to rise ...
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1.E+09 &
IBM
1.E+07 ASCI White
(7p]
& 1.E+05 IBM
"é Blue Gensg
- 1.E+03
(D]
o
IBM 704
1.E-01 ®
; Moore's law
1.E-03 - : 1 : 1 : 1 ' 1 ' 1
1950 1960 1970 1980 1990 2000 2010
Year

Source: www.top500.0org

TEXAS A&M
ATh | UNIVERSITY at QATAR WwwqatartamUEdu

CHEMICAL ENGINEERING



Atomistic MD Simulations of CO, Diffusivity in H,O for a Wide Range of m ‘ TEXAS A&M
Temperatures and Pressures UNIVERSITY at QATAR

Key role of H,0 - CO, mixtures for Carbon Capture and Sequestration

CO, is typically captured from fossil
fuel burning power plants, steel
and iron manufacturing plants and & ueorco, nenhanced coal bed metnane recovery

Overview of Geological Storage Options e— Droduced oil or gas

1 Depleted oiland gas reservoirs = ceeeeeceecensane Injected CO,
2 Use of CO, in enhanced oil and gas recovery - Stored CO
3 Deep saline formations — (a) offshore (b) onshore E

5 Deep unmineable coal seams

Other Chem|ca| pla nts or Other 6 Other suggested options (basalts, oil shales, cavities)
CO,-intensive  industries  and
transported to a storage site.

The CO, stream is stored in
geological repositories, such as
deep saline aquifers, coal beds or®
hydrocarbon reservoirs.

Accurate knowledge of transport is
necessary for the design of CCS
processes.
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Atomistic MD Simulations of CO, Diffusivity in H,O for a Wide Range of

Temperatures and Pressures

Model and methods

m TEXAS A&M
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Force-fields used

Water
e SPC
* SPC/E

* TIP4P/2005

Carbon dioxide
e EPM2
* TraPPE

Interatomic potential

m n 12 6
o'.a.b g'.a.b qaqb
_ 490 ij ij i)
Uij = €ij ab - ab + ab
r5 s Amegr
a=1b=1 ij ij 0%ij
s{ljb, ai‘}b: L) parameters between site a in molecule j and site b in
moleculej
ri‘}b: distance between sites a and b
qf, qjl-’: charges on site a and b
&o: dielectric constant of vacuum

Combining rules
1
el = (ef'ef)?

1

b (cfi“cr]-b)z fora,b = Ccpz, Ocoz for the EPM2 model
af’ =41
3 (o +O'jb ) otherwise

Mean square displacement

2
D = lim (r:(®) —7:(0))")

t—oo 6t

the diffusion coefficient for each state point was
calculated from 12 different simulations, each

one starting from a completely different initial
configuration

* 5ns NVE runs on 16 cores
e LAMMPS and GROMACS
simulators used
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Temperatures and Pressures

| — Exp. {I. Chem. Eng. Data 1988, 33, 29)

T (K)

Diffusivity increases with temperature

> sPC-EPM2 [ g
| @ SPC/E-EPM2
| W SPC/E - TraPPE
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Atomistic MD Simulations of CO, Diffusivity in H,0 for a Wide Range of

Absolute Deviation of D, from experiment (%)
=

All models can predict this behavior qualitatively

Low T (up to 323 K): TIP4P/2005 — EPM2 combination performs better (less than 2%
deviations from the experimental values)

Higher T (over 323 K): SPC/E — TraPPE combination becomes the most accurate
Combinations with SPC water overpredicts the diffusivity by approximately 90%
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Moultos et al., J. Phys. Chem. B, 118, 5532 (2014)
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Atomistic MD Simulations of CO, Diffusivity in H,O for a Wide Range of
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Pressure effect is different at low and high temperatures
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Atomistic MD Simulations of CO, Diffusivity in H,0 for a Wide Range of m ’ TEXAS A&M
Temperatures and Pressures UNIVERSITY at QATAR

Phenomenological model development

Power-law equation for the correlation of the 20 I ' ' ' ' ' L Py
. o . . s !
diffusivity results (D,, T, and m are parameters) 181 | ¥ SPOE- TraPPEat0.1 MPa / ¢ oy
| | ¥ SPC/E - TraPPE at 20 MPa / y 7]
m ,

T 16 | M TIP4P/2005 - FPM2 2t 0.1 MPa / P _

DCO2 =D, T 1 L | O TIP4P/2005 - EPM2 at 20 MPa /"' .

S — 14 — —]

121 |

T(K) D, (10°m%sY) m  T,(K) 10 B N

MD: SPC/E-TraPPE 298.15— 14.800 1.628 227.0 q\ B ]

478.15 S gl _

MD: TIP4/2005-EPM2 298.15 - 13.946 1.808 227.0 bt | ]

478.15 [ 6L |

MD: Geochim. Cosmochim. 273.0—373.0 14.684 1.997 217.2 L -

Acta 2011, 75, 2483 4+ .

Exp.: Geochim. Cosmochim. 268.15 - 13.942 1.709 227.0 - E

Acta 2013, 115, 183 473.15 21 -

i . | . | . | . | . l
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Atomistic MD Simulations of H,0 Diffusivity in CO, for a Wide Range of
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Excellent agreement between experimental data and MD predictions

H,O diffusion coefficient in CO,
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Atomistic MD Simulations of Mutual H,0 — CO, Diffusion Coefficients at i]—[ﬁ
high Temperatures and Pressures

TEXAS A&M
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Reliable predictions in the absence of experimental data (e

Diffusion coefficient of H,O in CO,

Diffusion coefficient of CO, in H,O (no expt. data above 308 K)

80 T T T T T =77 T | ! I ! I A ' ! I ' | ! I ! |
: 140 > .
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Gibbs Ensemble Monte Carlo Simulation

» Simultaneous Monte Carlo

-----------

simulation of the two phases ~ @ZZDy .- o
(two boxes, no interface). 9%

» By keeping the temperature,  Zggm foryson
000 !

total number of molecules and ggogggg
total volume constant (Gibbs- R eehe 2o

NVT simulation), the following starting displacements  or  volume  or
_ configuration changes
moves are allowed: 7
: . 'O E O & ! o !
— Particle displacement, | o O o T o O
: ! E , 0 ! L Ql
— Volume fluctuation of each = 2. = Lot .
OO GOy AN
box, ;ooggj% ;Ooo‘c_f% £90;
- ' ' 0050 | :
— Particle transfer from one Gog 00%6@ 50 %
phase to the other. e

» Applicable to pure component
and multicomponent mixtures.

Panagiotopoulos, Mol. Phys. 61, 813 (1987)
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Henry’s law constant for hydrocarbons in water

Methane in Water Ethane in Water
10 10
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Errington et al., J. Phys. Chem. B 102, 8865 (1998)
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Lines: Expt. data

Squares: GEMC,
MSPC/E

Circles: GEMC, exp-6

&
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Pressure (MPa)

Water — Hydrocarbon Phase Equilibria at
High Temperatures and Pressures — GEMC simulations
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““ 2 CO, — H,0 mutual solubilities
® . . . .
e F, Expt data (lines) and GEMC simulations (points)
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Gas Hydrates

v' |ce-like materials that belong to the category of
inclusion compounds.

v’ Solid network of hydrogen bonded water molecules
that form cavities encaging various “guest” molecules.

v’ Structures are only stable at relatively high pressure,
low temperature and in the presence of guest
molecules.

v More than 100 different molecules are known to be _ _
USGS website, The U.S. Geological

hydrate formers. Survey Gas Hydrates Project,
http://woodshole.er.usgs.gov/project-
pages/hydrates/primer.html

v’ There are 3 common crystalline structures of
hydrates, namely sl, sll and sH which differ in their
crystallographic details and in the size and ratio of
cavities.
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Gas Hydrates: Scientific and Technological Importance

Blocking pipe-lines

! . I
¢ { n - c
'

= Sudden methane release

= (0O, sequestration

Dissolved Organc Matter 10000
S

Methaneis a greenhouse

gaswith almost 30 times

the heat-frapping ability
of carbon dioxide.

Fossil Fuels
(OW, coal, gas)
5000

Source Besuchamp (2000 Units = 10 g carbon

I’Otel‘ltifll Ellel*g\f Reso[lrce (}ll)l)ﬂl (Zililllflte (:‘llflllﬁ

Separation Technologv
=  Gas Mixtures
= Water Desalination

Gas Storage and Transport
= H, CH, CO,

3 kg (H,) / 300 km

MgNiH, H,(liquid) 48H.°1361,0 H, @ 200bar ) Defrycrated Mud

ﬂ B Enlarged Hole

LANL modification of figurein:

Nature, 414,353 (2001). , . . .
( ) Oceanic slope collapsing Danger to oil platforms



Molecular Dynamics of Hydrate Systems

MD requires the accurate knowledge of:

|.  the molecular structure
Il. theintramolecular and intermolecular interaction potentials
lll. the crystal lattice constants of the hydrate structure (from XRD)

< 3.6 nm >

Pentagonal
Dodecahedron

Tetrakaidecahedron
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Direct Phase Coexistence Methodology for
Phase Equilibria Calculation

» Hydrate - Liquid water - Vapor guest
(methane) equilibria.

» Gibb’s phase rule: For a binary
system existing in 3 phases there is

only 1 degree of freedom.

» By fixing the pressure there exists only
one three phase coexistence temperature

(T5).

» At a given pressure, starting with a
three phase system and by scanning
the temperature the equilibrium
temperature can be found.

TEXAS A&M
AT& UNIVERSITY at QATAR WWWQata rtamUEdu

CHEMICAL ENGINEERING




Direct Phase Coexistence Methodology for
Phase Equilibria Calculation

» Hydrate - Liquid water - Vapor guest
(methane) equilibria. S

~ Gibb’s phase rule: For a binary —114—: g
— 2 i

system existing in 3 phases there is _.' WWWMW% —3 ]
only 1 degree of freedom. :“'"‘v'!*'%- w ‘

> By fixing the pressure there exists only o |
one three phase coexistence temperatu-

(T).
> At a given pressure, starting with a —-1241 ]
three phase system and by scannin ¢+ °
0 200 400 600 800 1,000 1,200 1,400 1,600

the temperature the equilibrium Time [ns]
temperature can be found.
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Stochastic nature of hydrate growth and dissociation

-
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Close to equilibrium temperature (~* 4K) the system can either
melt or form hydrate.

Severe problem in the determination of T3 if only one run is
used.

It necessitates a statistical averaging of a non-trivial number of
independent simulations.
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Stochastic nature of hydrate formation

» Example of statistical averaging at P=100 bar
» Expected value T;=282.8 K
» Prediction T; = 283.8 2.1 K

T (K)
279
281
283
285
287

T3 (K)

286

284

282

282

280
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g: growth
d: dissociation



Predicted 3-phase equilibrium temperature
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Conclusions

Molecular simulation is a powerful computational tool for
chemical process and product design.

It can provide reliable prediction of physical properties in
the absence of experimental data.

Accurate atomistic force fields are required for the
calculation of inter- and intramolecular interactions (very
time consuming process).

Molecular simulation data can be used to tune equations of
state and other empirical engineering models.

As computational resources increase, we can tackle more
challenging physical problems and can develop more
detailed representation of the nature.
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Human creativity vs. speed of computing
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From: Landau and Binder, A Guide to Monte Carlo
Simulations in Statistical Physics, 2000
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