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By 2050 200,000-360,000 km of pipeline will be

required for transportation of CO2 captured from

fossil fuel power plant for subsequent

sequestration (IEA, 2009).

Introduction
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CO2  pipeline transportation – hazards

At concentrations higher than 10%, CO2 gas is toxic and can even be 

fatal.

In the event of the accidental leakage/ release of CO2 from a pipeline:

• the CO2 gas can accumulate to potentially dangerous concentrations 

in low-lying areas,

• the released cloud could cover an area of several square kilometres.

Courtesy of Laurence Cusco, HSL
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CO2  pipeline transportation – hazards cont.
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Individual risk contours (10

cpm/year, 1 cpm/year and 0.3

cpm/year) using TWODEE-2 dose

results

Geographical distribution of the 

Potential loss-of-life (PLL) or EV 

density map
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Risk transects at regularly spaced points

along the pipeline route
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• A rigorous mathematical model for dynamic valve closure 

during pipeline decompression is developed

• Methodology is developed for a hazard-based optimisation of 

valve spacing

• Optimal valve spacing for a realistic Case Study is found to be 

ca. 15 km

• This is remarkably similar to current industrial standards for 

gas pipelines in the UK

Presentation headlines
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COOLTRANS Experimental release tests

Smaller scale venting tests,

primarily of interest for

maintenance

Large scale release tests and

fracture
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Pressurised CO2

Rupture 

plane: 1 atm

• At the rupture plane the fluid is exposed to ambient air

• Following the rupture, the rarefaction wave starts propagating along the 

pipe

• The vapour phase emerges in the expansion wave

Physics of decompression



10

Emergency Shutdown

Valves (ESDVs) valves also

play an important role in the

event of a pipeline failure:

• Isolation of pipe sections

for venting

• most importantly to limit

the amount of inventory

released

Valve stations are placed along the pipeline for use in routine maintenance

Emergency Shutdown Valves

But installation and operation of these sites represents a significant

financial cost.
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Figure 1: Schematic of the experimental set-up employed for the CO2 FBR tests

Experimental setup
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Governing Equations:

Where ρ, u, P and h are the density, velocity, pressure and specific 

enthalpy of the homogeneous fluid as function of time, t, and space, x. 

qh is the heat transferred through the pipe wall to the fluid.

Release behaviour- rigorous outflow model

More advanced models:

Brown et al. (2013) Int. J. Greenh. Gas Control

Brown et al. (2014) Int. J. Greenh. Gas Control
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Figure 1: Schematic of the experimental set-up employed for the CO2 FBR tests

Parameter Experimental Conditions

Feed pressure (bara) 151

Feed temperature (K) 300

Ambient pressure (bara) 1.01

Ambient temperature (K) 283

Reservoir Pipe Release pipe

Pipe length (m) 135 113

Internal diameter (mm) 908 146

Pipe thickness (mm) 3 2.81

Pipe roughness (mm) 0.05

Valve closure rate (cm/s) 2.95

Valve activation time (s) 240

Experimental setup
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Can we calculate the optimal number of valves 

for a given pipeline to simultaneously reduce 

costs and hazard posed by potential failure?

16
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The problem is posed as a simple trade-off between the reduction in

the consequences of failure offered by the valve and the cost:

VPN is the single valve cost (€)

r is the average life time of the equipment (y) 

n is the discount rate

L is the overall length of the pipeline (km)

D is the distance between consecutive valves (km)

The total valve cost for installation, J2 , is calculated using (Medina et 

al., 2012):

Problem definition
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The definition of J1 problematic because must:

1. Incorporate the effect emergency shutdown on the release

behaviour

2. Simulate the dispersion of the released CO2 cloud

• A detailed model for the dispersion is not practical for

optimisation (typically this can require months of HPC

resources)

• Dense gas dispersion model SLAB utilised

3. Define a meaningful metric for the hazard from the above

Problem definition cont.
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Figure 2: Variation of concentration contours for 4 sampling sets

Disperion of cloud - SLAB 
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From the cloud dispersion model could calculate Dangerous Toxic 

Loads given a population density with either the:

• SLOD (Significant Likelihood of Death)

• SLOT (Specified Level of Toxicity)

But for CO2 these are contentious so we select a simple measure:

• Quasi-steady CO2 concentration of contours calculated at 

given intervals

• Time averaged area bounded by the 7 % contour was 

calculated and used for J1

Definition: J1
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Find the optimal valve spacing for a typical 96 km pipeline with a 

Full Bore Rupture at 48 km

Optimisation Case Study

A parallel Monte Carlo simulation using 30 different randomly

generated valve spacings was performed to generate the Pareto

set.

Emergency valves placed upstream and 

downstream of failure
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Parameter Value Parameter Value

Pipeline Boundary Conditions

Pipeline external 

diameter
610 mm Upstream end Constant pressure

Pipeline wall 

thickness
19.4 mm Downstream No back flow

Pipeline wall 

roughness
0.005 mm Initial Conditions

Pipeline length 96 km Pressure in pipe 151 bara

Pipeline angle Horizontal Temperature in pipe 30 °C

Ambient temperature 10 °C

Table 1. Pipeline characteristics and fluid conditions for failure scenario.

Optimisation Case Study cont.
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• A rigorous mathematical model for dynamic valve closure 

during pipeline decompression is developed

• Methodology is developed for a hazard-based optimisation of 

valve spacing

• Optimal valve spacing for a realistic Case Study is found to be 

ca. 15 km

• This is remarkably similar to current industrial standards for 

gas pipelines in the UK

Conclusions
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