

CO₂QUEST Optimal Valve Spacing for Next Generation CO₂ Pipelines

Dr Solomon Brown

H. Mahgerefteh, V. Sundara & S. Martynov University College London

http://www.co2quest.eu

By 2050 200,000-360,000 km of pipeline will be required for transportation of CO_2 captured from fossil fuel power plant for subsequent sequestration (IEA, 2009).

CO₂ pipeline transportation – hazards

At concentrations higher than 10%, CO₂ gas is toxic and can even be fatal.

In the event of the accidental leakage/ release of CO_2 from a pipeline:

- the CO₂ gas can accumulate to potentially dangerous concentrations in low-lying areas,
- the released cloud could cover an area of several square kilometres.

Courtesy of Laurence Cusco, HSL

CO₂ pipeline transportation – hazards cont.

Individual risk contours (10 cpm/year, 1 cpm/year and 0.3 cpm/year) using TWODEE-2 dose results

Geographical distribution of the *Potential loss-of-life* (PLL) or EV density map

Presentation headlines

- A rigorous mathematical model for dynamic valve closure during pipeline decompression is developed
- Methodology is developed for a hazard-based optimisation of valve spacing
- Optimal valve spacing for a realistic Case Study is found to be ca. 15 km
- This is remarkably similar to current industrial standards for gas pipelines in the UK

COOLTRANS Experimental release tests

Smaller scale venting tests, primarily of interest for maintenance

Large scale release tests and fracture

Physics of decompression

- At the rupture plane the fluid is exposed to ambient air
- Following the rupture, the rarefaction wave starts propagating along the pipe
- The vapour phase emerges in the expansion wave

Emergency Shutdown Valves

Valve stations are placed along the pipeline for use in routine maintenance

Emergency Shutdown Valves (ESDVs) valves also play an important role in the event of a pipeline failure:

- Isolation of pipe sections for venting
- most importantly to limit the amount of inventory released

But installation and operation of these sites represents a significant financial cost.

Experimental setup

Figure 1: Schematic of the experimental set-up employed for the CO₂ FBR tests

Release behaviour- rigorous outflow model

Governing Equations:

Where ρ , u, P and h are the density, velocity, pressure and specific enthalpy of the homogeneous fluid as function of time, t, and space, x. q_h is the heat transferred through the pipe wall to the fluid.

More advanced models: Brown et al. (2013) *Int. J. Greenh. Gas Control* Brown et al. (2014) *Int. J. Greenh. Gas Control*

Experimental setup

Comparison with predictions: Pressure

Comparison with predictions: Temperature

Can we calculate the optimal number of valves for a given pipeline to simultaneously reduce costs and hazard posed by potential failure? The problem is posed as a simple trade-off between the reduction in the consequences of failure offered by the valve and the cost:

 $\min_{d\in D} J_1(d), J_2(d)$

The total value cost for installation, J_2 , is calculated using (Medina et al., 2012):

$$J_2(d) = \frac{V_{PN}r(1+r)^n L}{\left((1+r)^{n+1}-1\right)d},$$

V_{PN} is the single valve cost (€) *r* is the average life time of the equipment (y) *n* is the discount rate *L* is the overall length of the pipeline (km)
D is the distance between consecutive valves (km)

The definition of J_1 problematic because must:

- 1. Incorporate the effect emergency shutdown on the release behaviour
- 2. Simulate the dispersion of the released CO_2 cloud
 - A detailed model for the dispersion is not practical for optimisation (typically this can require months of HPC resources)
 - Dense gas dispersion model SLAB utilised

3. <u>Define a meaningful metric for the hazard from the above</u>

* * * * * * * * *

Disperion of cloud - SLAB

Figure 2: Variation of concentration contours for 4 sampling sets

From the cloud dispersion model could calculate Dangerous Toxic Loads given a population density with either the:

- SLOD (Significant Likelihood of Death)
- SLOT (Specified Level of Toxicity)

But for CO_2 these are contentious so we select a simple measure:

- Quasi-steady CO₂ concentration of contours calculated at given intervals
- Time averaged area bounded by the 7 % contour was calculated and used for J_1

Find the optimal valve spacing for a typical 96 km pipeline with a Full Bore Rupture at 48 km

A parallel Monte Carlo simulation using 30 different randomly generated valve spacings was performed to generate the Pareto set.

Table 1. Pipeline characteristics and fluid conditions for failure scenario.

Parameter	Value	Parameter	Value
Pipeline		Boundary Conditions	
Pipeline external diameter Pipeline wall thickness Pipeline wall roughness	610 mm	Upstream end	Constant pressure
	19.4 mm	Downstream	No back flow
	0.005 mm	Initial Conditions	
Pipeline length	96 km	Pressure in pipe	151 bara
Pipeline angle	Horizontal	Temperature in pipe	30 °C
		Ambient temperature	10°C

7 % concentration contours

Figure 3: Variation of 7 % concentration half-contours with time

Objective curves

Figure 4: Normalised valve cost and area spanned by 7 % concentration

Pareto set

Figure 5: Normalised Pareto set

Comparison of trade-off curves

Conclusions

- A rigorous mathematical model for dynamic valve closure during pipeline decompression is developed
- Methodology is developed for a hazard-based optimisation of valve spacing
- Optimal valve spacing for a realistic Case Study is found to be ca. 15 km
- This is remarkably similar to current industrial standards for gas pipelines in the UK

**** **** ****

The research leading to the results described in this presentation has received funding from the European Union 7th Framework Programme FP7-ENERGY-2012-1-2STAGE under grant agreement number 309102.

The presentation reflects only the authors' views and the European Union is not liable for any use that may be made of the information contained therein.

Project partners

University College London (UK)

National Research Centre for Physical Sciences "Demokritos" (Greece)

Imperial College London Imperial College of Science, Technology and Medicine (UK)

Environmental & Water Resources Engineering Ltd. (Israel)

University of Leeds (UK)

Research Centre for Steel Related Applications, OCAS (Belgium)

Uppsala Universitet (Sweden)

National Institute for Industrial Environment and Risques, INERIS (France)

Dalian University of Technology (China)

Federal Inst. for Geosciences and Natural Resourses, BGR (Germany)

CO2QUEST

Thank you

Questions

Contact details

Solomon Brown

University College London Gower Street, London, United Kingdom **Tel: +44-2076793809**

www.co2quest.eu

