

CO₂ Solubility Performance of Deep Eutectic Solvents (DES)

Water and Energy Workshop Organized by Texas A&M University at Qatar

Ruh Ullah /MERT ATİLHAN Research Fellow/Associate Professor

Department of Chemical Engineering, Qatar University February 16, 2015 Doha, Qatar

Power Generation

Sources as they apply to 24 hour

We're still heavily dependent on the fossil based fuels. Consequent effects are gaseous emissions! Especially CO₂...

World Energy Related CO₂ Emissions

U.S. Energy Information Administration / International Energy Outlook 2012 OECD = Organization Economic Cooperation and Development member countries Global energy use accounts for over 85% of the 37 Gt of CO2 released to the atmosphere annually

CC & ?

Problem(s)?

"If you are looking for a nice academic/industrial/environmental problem to work on, CO₂ capture is a great one!"

Paul Alisivatos & Michelle Buchanan

New/Recent Reservoirs Qatar North Field

Qatar North Field

Qatar natural gas flows, 2003-2012 trillion cubic feet

Basic Gas Facts - Qatar

Basic Gas Facts	2006	2007	2008	2009	2010
Gas reserves (bcm)		25620	25242	25366	25257
Gas production (mcm)	51556	61878	78306	89389	120568
Gas consumption (mcm)	17236	19232	20291	22921	23687
Gas imports (mcm)					
-Imports pipeline					
-Imports LNG					
Import dependency (%)*					
Gas exports (mcm)	33836	41516	57897	67425	96880
Natural gas supply per capita (toe)					
Technically recoverable shale gas					
resources (bcm)					
Coalbed methane resources (bcm)					
c = confidential: - = nill: = not available					

* Imports dependency of natural gas = (Imports - exports) / consumption Source: Natural Gas Information © OECD/IEA, 2011

Qatar's natural gas production rate & Qatar's proven reservoirs.

CO₂ Capture Perspective

Various Opinions: Politicians vs. Academicians

Grand Challenges of the 21st Century

Environment

Greenhouse gases

• CO_2 levels will reach ~ 500 ppm by 2050 (460 ppm is the point of no return)

♦ Ocean floor has more carbon (in CH₄) than all fossil fuels combined

Sustainability

Accessible technologies

 Lack of accessible and sustainable technologies

- Higher energy prices
- Expensive infrastructure maintenance

+ Energy + Water

Where is the problem?

- **Target CO₂ capture locations:**
 - Post combustion
 - Pre combustion

Thermodynamically appreciable solutions

Current Status

http://www.ico2n.com/

Chemical Engineers are conservative: Amines

- Gas-liquid interface controls kinetic studies of structure and dynamics
- Can complex fluids be employed?

- Can the non-ideal solution behavior in mixtures be predicted and exploited?
- Can chemically / thermally stable materials be designed with high and reversible reactivity and specificity? Ionic Liquids...

Membranes

Dalton Transactions, 41 (46), 2012

Schematic presentation of the trade-off between permeability and selectivity with the 1991 and 2008 Robeson upper bounds.

- Polymer membranes are used in many gas separation applications including natural gas treatment (removal of CO₂ before the natural gas can be passed to the pipeline)
- Separation based on selective permeation of targeted gas:
 - Selectivity based on relative solubility and diffusivity in membrane
 - Selectivity is not 100%
- <u>Trade-off on selectivity and permeability</u> (need to have both)
- Change in pressure needed to drive separation
- Can new materials be designed with nano-scale structures to enhance transport and selectivity?
- How can chemical and physical properties be used to design new membrane materials for <u>enhanced performance?</u>

Adsorbents: High Temperature & High Pressure

ChemSusChem 2009, 2, 796 – 854

Angew. Chem., 2010, 49, 6058 – 6082

CO₂ Solubility in Ionic Liquids at High Pressures

Imidazolium Based Ionic Liquids: Experimental and Simulation Approaches Swelling effect on each ionic liquid was calculated and corrected. 1-butyl-3-methylimidazolium hexafluophosphate, [bmim][PF₆], 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, [emim][Tf₂N] 1-butyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, [bmim][Tf₂N]

Isothermal experimental solubility data of CO₂ in the studied ionic liquids. Swelling corrected for high pressure CO₂ absorption data.

Fluid Phase Equilibria, 2013, 74-86 (351) J. Phys. Chem. B, 2012, 116 (30), pp 9171–9185 J. Phys. Chem. C, 2012, 116 (22), pp 12055–12065 J. Phys. Chem. B, 2011, 115 (43), pp 12499–12513 Energy Fuels, 2010, 24 (11), pp 5817–5828 Energy Fuels, 2010, 24 (9), pp 4989–5001 Ind. Eng. Chem. Res., 2010, 49 (20), pp 9580–9595

Issues with Ionic Liquid Utilization

- Still very expensive
- Needs bulk production for making them economically attractive
- High viscosity pumping issues
- Limitations in mass transfer
- Florination might be an issue with some anions

Alternatives???

Deep Eutectic Solvents (DES)

Definition

- Deep Eutectic Solvents (DES) are a mixture of 2 or more components with a melting point lower than either of its individual components.
- DES are obtained by mixing a quaternary ammonium halide salt, an hydrogen bond acceptor (HBA), with an hydrogen bond donor (HBD) molecule, which should be able to form a complex with the halide, leading a significant depression of the freezing point.

Deep Eutectic Solvents (DES)

- Mixture of 2 compounds that has the lowest melting point
- Depression of freezing point related to the strength of interaction between the 2 components

```
cation + anion + complexing agent \leftrightarrow cation + complex anion
or
cation + anion + complexing agent \leftrightarrow complex cation + anion
```


Schematic solid-liquid phase diagram for a binary mixture between a salt and an HBD, showing the appearance of DES at the mixture composition and temperature remarked in the Figure. T_m stands for melting point. Solid line shows the melting point temperature as a function of mixture composition, dashed lines shows the temperature and composition of the eutectic mixture.

Deep Eutectic Solvents (DES)

- DES provide other interesting advantages in comparison with pure ILs, such as the fact that DES preparation may be carried out with 100% atom economy.
- DES can be also obtained from natural sources, so-called Natural DES, particularly through primary metabolites such as organic acids, amino-acids, and sugars.

Objective(s): We're after

- Low cost
- High solute solubility
- Wide potential window
- Environmental compatibility
- No registration requirements

Solvents to substitute the current state-of-theart in CO₂ capture.

Choline Chloride + Levulinic Acid

- [CH][Cl] is a non-toxic, fully biodegradable compound, which can be obtained at very low cost
 - Vitamin B4 RDA 550mg
 - Produced on Mt scale (chicken feed additive) hence costs about 2 Euro/kg
- Levulinic acid (LEV) is a compound fully biodegradable, nontoxic, that may be obtained from biomass at low costs

Components

- The available studies on CO₂ capture using [CH][CI] – based DES are mostly limited to systems such as urea, glycerol, ethyleneglycol or carboxylic acids such as malonic or lactic.
- But no studies for DES involving LEV are reported
- Molar mixing ratio: 1:2 (*more will be experimented soon*)

Physical Properties - Density

Figure. Experimental density data for [CH][CL]+[LEV] 1:2 system at 1 atm (data obtained from Anton Paar[®] DM4500 Apparatus)

Physical Properties - Viscosity

CO₂ Solubility Measurements

- We used Rubotherm[®] sate-of-the-art gas sorption apparatus.
- Two isotherms are used: 25 °C and 50 °C
- Pressure measurements have been collected up to 30 bar with 5 bar increments.
- Buoyancy correction has been taken care of.

Gas Solubility Apparatus

Rubotherm ® Magnetic Suspension Balance Assembly Atilhan Lab, Qatar University

Rubotherm ® GmBH Magnetic Suspension Sorption Apparatus (top-left) Magnetic Suspension Thermal Analyzer (bottom-left – Gas Processing Center, Qatar University) 26

High Pressure Sorption Cell

Rubotherm[®] Magnetic Suspension Balance (MSB). Photos of the magnetic suspension assembly, sample container basket, measuring cell and the magnetic coupling housing.

Operating Principle

Schematics of magnetic suspension sorption apparatus operating principle. (**A**) sample loaded to measuring basket in high pressure cell; (**B**) Measurement point 1 (MP1) – magnetic coupling is on and mass of the sample is measured; (**C**) Measurement point 2 (MP2) – in–situ density of the adsorbed gas is measured.

CO₂ Solubility Data – 25°C

CO₂ Solubility Data – 25°C (Repeatability)

CO₂ Absorption Data by DES up to 30 bar at 25 C (Repeatability)

CO₂ Solubility Data – 50°C (Repeatability)

Comparison w/ Previous Studies

	С	Componentes of DES			C-L-L?P4-	T / P
	IL	HBD	Molar Ratio	Adsordate	Solubility	(K/bar)
This work	choline chloride	levulinic acid	1:2	CO ₂	2.199 mmol/g	298 / 30
	choline chloride	levulinic acid	1:2	CO_2	1.941 mmol/g	323 / 30
Literature -	choline chloride	urea	1:2	CO ₂	3.559 mmol/g	303.15 / 60
	choline chloride	ethylene glycol	1:2	CO_2	3.1265 mmol/g	303.15 / 60
	choline chloride	ethanole amine	1:6	CO_2	0.0749 mmol/g	298 / 10
	choline chloride	triethylene glycol	4:1	CO_2	0.1941 mmol/g	293 / 5
	choline chloride	phenol	4:1	CO_2	0.2108 mmol/g	293 / 5
	choline chloride	diethylene glycol	4:1	CO ₂	4.204 mmol/g	293 / 5
	choline chloride	glycerol	1:1	SO_2	0.678 g /g	290 / 1
	choline chloride	2,3-butanediol	1:4	CO_2	0.426 mmol/g	298 / 5
	choline chloride	1,4-butanediol	1:3	CO ₂	0.372 mmol/g	298 / 5
	choline chloride	1,2-propanediol	1:3	CO_2	0.374 mmol/g	298 / 5
l	choline chloride	lactic acid	1:2	CO_2	0.562 mmol/g	348 / 20

In-Situ FTIR Measurements

Asymmetric Stretch of CO₂ at (2300 to 2400) cm⁻¹ band

In-Situ FTIR Measurements

In-Situ FTIR Measurements

Other characteristics of CO₂ IR Spectra at (3600 and 3700) cm⁻¹ no CO2 1.0 bar 1.0 1.0 bar 2.0 bar 3.0 bar 0.5 4.0 bar 5.0 bar Single channel 6.0 bar 0.0 7.0 bar 8.0 bar 9.0 bar -0.5 10 bar 15 bar 20 bar -1.0 25 bar 30 bar 0.2 bar 0.4 bar 0.6 bar 3800 3900 3700 3600 3500 3400 0.8 bar Wavenumber cm-1

Further Work...

- Surface tension
- Conductivity
- NMR
- Other mixing ratios
- Molecular simulations
- [CH][Cl]+[PAC]

Snapshot of the [Ch][Cl]+LEV] 1:2

(a) vacuum or (b) CO₂ interfaces calculated from molecular dynamics simulations at 298 K. Color code: (blue) [CH]⁺, (green) Cl⁻, (red) LEV, and (yellow) CO₂. Snaphots obtained after 5.5 ns simulations.

Funding

- QNRF
 - NPRP 5-499-1-088
 - UREP 15-131-2-044
- Spanish National Secretariat for Research and Development, Ministry of Economy.

Member of Qatar Joundation

Department of Chemical Engineering

Thermodynamics Energy & Environment

Atilhan Lab, Qatar University

Group...

