Impact of Shale Gas on Energy Efficiency and Smart University of Texas-Austin Montgomery, TX, March 27, 2014

Manufacturing Thomas F. Edgar NSF Workshop on Shale Gas Monetization

U.S. energy/environment overview • Energy efficiency and power production alternatives • Smart manufacturing to reduce energy usage • Next generation power systems (smart grids, combined heat and power) • Thermal energy storage and process control

Assumes use of existing infrastructure to maximize thermal efficiency • Maximize efficiency \equiv minimize carbon

Focuses on process operation and control

(not design) footprint

Most carbon dioxide currently comes from

• Progress will require a systems approach

fossil fuel combustion

- e Reduce energy requirements — Use less energy-intensive chemistry/unit
	- Increase heat integration/cogeneration
		- mechanical energy
			-

e Reduce carbon emissions (no major process

— Change the process to alter thermal vs. electro-

operations changes)

CHP Energy and CO, Savings Potential (10 MW)

Source: U.S. Department of Energy

e Increasing supplies of domestic natural gas e Increased usage in power generation(lower

(+20%), \$4/MSCF GHG)

e Makes U.S. industrial locations more globally e Changes regional industrial development competitive (feedstock, power) options (e.g., NY-PA), subject to local environmental pressures

The ability to take action, in real time, to OPTIMIZE your assets In the context of your business Strategies and imperatives

The infusion of intelligence that transforms the way Industries conceptualize, design, and operate the manufacturing enterprise.

https://smartmanufacturingcoalition.org http://smartmanufacturing.com

COI

COI

© SMLC, In

© SMLC, Inc. All Rights Reserved.

e Connect your smartphone to your digital scale

e Then you will lose weight e You have to do something else?

21st Century Smart Manufacturing

- chain
- enterprise
- performance-oriented and material usage and sustainability, health and safety and economic competitiveness.

Integrates the intelligence of the 'customer' throughout the entire manufacturing supply

Responds to the customer as a coordinated manufacturing

Apply

Responds to the public as a enterprise, minimizing energy maximizing environmental

Dramatically intensified application of manufacturing intelligence using advanced data analytics, modeling and simulation to produce a fundamental transformation to transition/new product-based economics, flexible factories and demand-driven supply chain service enterprises

Data

Analyze

Model

Health & Chem Architecture Market, Valuation of Data & Innovation

Smart

Collective

Manufacturing **Numbers** Converting Information Open Architecture **Convening** In the Knowledge

Practice Valuation **Innovation & Converting Knowledge to** Collective vs. Proprietary | Practice Nuisdom

Data & Device Integration & Data Valuation Marine Data & Device integrition

Proprietary **Not Recure Data Highways**

Secure I, P and SaaS

Smart Enterprise

Smart Factory Manufacturing

Collective vs.

Converting Data to Information

© SMLLC, Inc. All Rights Reserved.

Global Manufacturing The Business of **Sustainability**

• Conventional efficiency: 40-55% • Cogeneration efficiencies: 75-85% $\boldsymbol{\cup}$

Smart Power Grids

- Delivery of electric power using two-way digital technology and automation with a goal to save energy, reduce cost, and increase reliability.
	-
- Power generated and distributed optimally for a wide range of conditions either centrally or at the
	- customer site, with variable energy pricing based on time of day and power supply/demand.
		-
- e Increased use of intermittent renewable power sources such as solar or wind energy but increased
	- need for energy storage.

Source: ERCOT Reliability/Resource Update 2006 14

Average Real-Time Pricing Patterns for 2008*

"Summer prices are for June - August. Depending on market conditions, prices can vary signficantly from this typical pattern. Savings cannot be guaranteed.

-
- Increased energy efficiency and decreased
	-
	-

• Stronger focus on energy use (corporate

• Energy use measured and optimized for each

• Increased use of renewable energy(e.g., solar thermal and biomass) and energy storage • Interface with smart grids and energy storage

energy czars?) carbon footprint unit operation

"FIRST, THE GOOD NEWS: WE'VE SHUT DOWN THE COAL-FIRED ELECTRIC POWER PLANT IN YOUR BACKYARD. "

-
-
-

e Thermal energy storage (TES) systems heat or cool a storage medium and then use that hot or cold medium for heat transfer at a later point in time (steam, water, ice).

e Using thermal storage can reduce the size and initial cost of heating/cooling systems, lower energy costs, and reduce maintenance costs. If electricity costs more during the day than at night, thermal storage systems can reduce utility bills further.

e Incentive for thermal storage (NY Con Edison) for building or industrial users: \$2,600/KW vs. \$2,100/KW for battery storage

Energy flows in a combined heat and power system with thermal storage

UT Austin – A CHP plant $(80 + %)$ efficiency with District Cooling Network

**TES – Thermal energy storage*

• Chilled water network

• Economy of scale

- Centralized chillers
- · Thermal energy storage

• Opportunity
for optimal chiller loading

District Cooling

Chilled water

• A chiller cools the water for air conditioning • Other energy consuming equipment in a chilling station are cooling towers and pumps Chillers are different from one another in terms of efficiency and/or capacity. • Optimal chiller loading – best distribution of cooling load among chillers to minimize the power

• Thermal energy storage - to store chilled water which can be used later

23

consumption

Optimization Results

- -Chillers 1& 4 are most efficient, 3 is least efficient
- -Chiller 1 is variable frequency
- (a) Experience-based (operator-initiated) -No load forecasting

-Uses least efficient chiller (Chiller 3) (b) Load forecasting + optimization -Uses most efficient chillers (avoids Chiller 3) (c) Load forecasting + TES + optimization -Uses only two most efficient chillers

-
-

The Campus is a microgrid and provides 100% of its — electrical — heating, and — cooling loads UT Austin does not participate in open electricity market Opportunity for interconnection with the external grid — economic benefit

Overview of the CHP Plant at UT Austin Hal C. Weaver Power Plant (80+ % efficiency)

-
- -

Gas Heat

Model assumptions – Low
Lumped
Lumped e e First principles models based on ¢ Constant model parameters, i.e., \bullet Steady state — Sampling period Δt of 1 hour mass and energy balance — Heat capacity C, — Lower heating value (LHV) — Unit efficiency 7 Lumped parameter model

. There are two units of the same kind but only one a unit operates at a time

Campus capacity vs. Campus demands

e UT could sell

- 70 — 176 GWh to the grid in 2012
- 157 GWh to the grid in 50 2011
	- e At an average electricity
		- price of \$ 0.02/kWh,
		- potential revenue of
			- \$ 3.53 million in 2012
				- \$ 3.14 million in 2011

Economic Analy

Economic Dispatch of a CHP Plant at UT Austin Key assumptions

Interconnection with E — Case]

 \bullet

- \bullet Sell/buy power
- \bullet 0 $\leq P_m$ (k)
- $P_m(\mathbf{k}) = 0$, stand — Case Il
	- \bullet Only sell the ϵ
- \bullet $P_I(\mathbf{k}) \leq P_m(\mathbf{k})$ — Case Ill
	-
	-
	- $P_{I}(\mathbf{k}) = P_{m}(\mathbf{k})$

¢ No power sales or purchases ¢ Optimal turbine and boiler loading

- e of Energy Market
- Day-ahead energy market
- le periods:
- $2/1/2011 \sim 11/30/2011$
- $1/1/2012 \sim 12/31/2012$
- ural gas price: \$5.12/MMBtu in 2011 or \$3.96/MMBtu in 2012
- 890,000 MMBTU/MSCF
- Lower Heating Value (LHV) of 20,313 Btu/Ibm
- Natural gas density of 0.0438 lbm/SCF

*Electric Reliability Council of Texas

UT Austin

Economic Dispatch of a CHP Plant at Problem formulation – objective function to be minimized

Objective function

where

- $-F_{d, GT}$ is the fuel demand signal in a gas turbine
- $-\theta_{IGV}$ is an inlet guide vane angle
-
- $W_{f. H R S G}$ is the duct burner fuel flow in a HRSG
- $-W_{f, BR}$ is the fuel flow in a boiler
- $-W_{S, EXT}$ is extraction steam flow
- $-P_I$ is the electric load
- $-W_c$ is superheated steam flow rate
- $-C_{\text{elec}}$ is the price of electricity
- $-C_{fuel}$ is the price of natural gas
- COP is coefficient of performance

 $\min_{\substack{F_{d,\ GT}^i, \theta_{IGV}^i \ F_{W,\ THAC}^i, W_{f,\ HRSG}^i}} \mathrm{J} = \sum_{i=1}^N \left[\begin{matrix} -C_{elec}^i \left(P_{m,\ GT}^i + P_{m,\ ST}^i - P_{I,i} \right) + C_{elec}^i \Delta H_{f,\ HRSG}^i \ + \mathrm{C}_{fuel}^i \left(\mathrm{W}_{f,\ GT}^i + \mathrm{W}_{f,\ HRSG}^i + \mathrm{W}_{f,\ HRSG}^i \right) \end{matrix} \right]$

 $-V_{W, TIAC}$ is the volumetric flow rate of cooling water

$$
H_{\text{TIAC}}^{i} \frac{1.1}{COP} \left[\Delta t, \ N = \text{number of } h \right]
$$
\n
$$
H_{\text{f, BR}}^{i} \left[\sum_{f, \text{ BR}} \Delta t, \ N = \text{number of } h \right]
$$
\n
$$
H_{\text{p, BR}}^{i} \left[\sum_{f, \text{ BR}} \Delta t, \ N = \text{number of } h \right]
$$
\n
$$
H_{\text{p, BR}}^{i} \left[\sum_{f, \text{ BR}} \Delta t, \ N = \text{number of } h \right]
$$

Decision variables

Power production Cooling load in the TIAC system Total fuel consumption $\Delta H^{i}_{TIAC} = f\left(\theta_{IGV}, V_{W, TIAC}, T_{a}, P_{a}, RH, T_{wi,TIAC}\right)$

ours

SQP

Objective function

subject to

 $F_{d, GT}^{-} \leq F_{d, GT}^{T} \leq F_{d, GT}^{+}$ for all i $\theta_{IGV}^{-} \leq \theta_{IGV}^{i} \leq \theta_{IGV}^{+}$ $V_{W, TIAC} \leq V_{W, TIAC} \leq V_{W}^{+}$ $W_{f, H R S G}^{-} \leq W_{f, H S R G}^{i} \leq W$ $W_{f, BR}^{\text{-}} \leq W_{f, BR}^{i} \leq W_{f, BR}^{+}$ $W_{S, \,EXT}^{demand} \leq W_{S, \,EXT}^{i} \leq W_{S, \,EX}$ $T_{SH. H RSG} \leq \Delta T_{min. H RSG} \leq$

Problem formulation – constraints

 $\min_{\substack{F_{d,\ GT}^i, \theta_{IGV}^i \ f_{w,\ TIAC}, \ W_{f,\ HRSG}^i}} \mathrm{J} = \sum_{i=1}^N \left| \begin{array}{c} -C_{elec}^i \left(P_{m,\ GT}^i + P_{m,\ ST}^i - P_{I,i} \right) + C_{elec}^i \Delta H_{TIAC}^i \ + \mathrm{C}_{fuel} \left(\mathrm{W}_{f,\ GT}^i + \mathrm{W}_{f,\ HRSG}^i + \mathrm{W}_{f,\ BR}^i \right) \end{array} \right.$

$$
\overset{+}{V}, \; TIAC
$$

$$
W_{f,\:H R S G}^+
$$

$$
\overline{\mathsf{R}}
$$

$$
, THR
$$

$$
\leq T_{e,\;H R S G}^{\iota}
$$

- $W_{s, THR}$ is the throttle steam flow - T_f is the turbine's firing temperature

$$
\Delta H_{\text{TIAC}}^i \frac{1.1}{COP} \left[\Delta t, \ N = \text{number of hours} \right]
$$
\n
$$
W_{f, BR}^i
$$
\n
$$
V_{f, BR}^i
$$
\n
$$
T_i^- \le T_i^i \qquad 0 \le P_{m, GT}^i \qquad 0 \le P_{m, H}^i
$$
\n
$$
T_e^i \le T_{e}^{ref} \qquad W_{SH, H R S G}^i \le W_{SH, H}^+
$$
\n
$$
T_f^i \le T_f^{ref} \qquad W_{SH, BR}^i \le W_{SH, BR}^+
$$

- $T_{\rm SH, BR}$ is the temperature of steam produced from the boiler - $T_{SH. HRSG}$ is the temperature of steam produced from the HRSG - $W_{SH, BR}$ is the steam flow from the boiler - $W_{SH. HSRG}$ is the steam flow from the HRSG

- T_i is the air temperature at compressor inlet

orithm

IRSG

Summary

a. net income by selling power to the grid

e CSP technologies concentrate sunlight to heat a fluid and run a generator

By coupling CSP with TES, we can better control when the electricity is produced

 $(m²)$ Solar Radiation Radiation Solar

Time of Day

Feedforward + Feedback (PID) temperature control — Uses FF measurements of used for steam flow

Supplemental gas used sufficient (stream 4)

Delivered to Load Required (MWh)

*Solar Share increased by 47% on sunny day, 3% on Cloudy day *Power quality much better with storage *Dynamic optimization with weather forecasts can further improve solar share

AIChE Journal

Brunet, Robert, Gonzalo Guillén-Gosálbez, and Laureano Jiménez. "Minimization of the nonrenewable energy consumption in 39 bioethanol production processes using a solar-assisted steam generation system." AIChE Journal 60.2 (2014): 500-506.

Table 5. Economic and Energetic Summary of the Bioethanol Process

Net Present Va Energy consum (Btu/gal) Total Capital Investment Operating Cost Production Rat Unit Production Cost (3/kg) Unit Selling Property Total revenues Area solar pan Natural gas co (kg/yr)

40

AIChE Journal

Brunet, Robert, Gonzalo Guillén-Gosálbez, and Laureano Jiménez. "Minimization of the nonrenewable energy consumption in bioethanol production processes using a solar-assisted steam generation system." AIChE Journal 60.2 (2014): 500-506.

- Many opportunities to improve energy efficiency in the process industries by use of natural gas • Energy efficiency \equiv sustainability (carbon footprint) • Smart grids, cogeneration will change the power environment for manufacturing • Competitive electricity market is a good match for CHP • Energy storage plus PSE tools will be critical
	- technologies to deal with this dynamic environment

• Texas Instruments **4p** Texas Instruments UT Sustainability Fund CHEMSTATIONS Chemstations • UT Austin – Utilities and Energy **Energy Energy** Utilities & Energy Management Management

Chen

