

Manufacturing Thomas F. Edgar NSF Workshop on Shale Gas Monetization

Impact of Shale Gas on Energy Efficiency and Smart University of Texas-Austin Montgomery, TX, March 27, 2014

• U.S. energy/environment overview • Energy efficiency and power production alternatives • Smart manufacturing to reduce energy usage Next generation power systems(smart grids, combined heat and power) Thermal energy storage and process control

(not design) footprint

• Assumes use of existing infrastructure to maximize thermal efficiency • Maximize efficiency \equiv minimize carbon

 Most carbon dioxide currently comes from fossil fuel combustion • Progress will require a systems approach

Focuses on process operation and control

operations changes)

- Reduce energy requirements – Use less energy-intensive chemistry/unit
 - Increase heat integration/cogeneration
 - mechanical energy

– Change the process to alter thermal vs. electro-

• Reduce carbon emissions (no major process

	10 MW CHP	10 MW PV	10 MW Wind	Combined (10 MW P
Annual Capacity Factor	85%	22%	34%	70%
Annual Electricity	74,446 MWh	19,272 MWh	29,784 MWh	61,320 M
Annual Energy Savings	308,100 MMBtu	196,462 MMBtu	303,623 MMBtu	154,649 N
Annual CO ₂ Savings	42,751 Tons	17,887 Tons	27,644 Tons	28,172 To
Annual NOx Savings	59.4 Tons	16.2 Tons	24.9 Tons	39.3 Tons

Source: U.S. Department of Energy

CHP Energy and CO₂ Savings Potential (10 MW)

(+20%), \$4/MSCF GHG)

• Increasing supplies of domestic natural gas • Increased usage in power generation(lower

• Makes U.S. industrial locations more globally competitive (feedstock, power) • Changes regional industrial development options (e.g., NY-PA), subject to local environmental pressures

The ability to take action, in real time, to OPTIMIZE your assets in the context of your business strategies and imperatives

The infusion of intelligence that transforms the way Industries conceptualize, design, and operate the manufacturing enterprise.

© SMLC, Inc. All Rights Reserved.

https://smartmanufacturingcoalition.org http://smartmanufacturing.com

• Connect your smartphone to your digital Scale

• Then you will lose weight • You have to do something else?

21st Century Smart Manufacturing

- chain
- enterprise
- performance-oriented and material usage and sustainability, health and safety and economic competitiveness.

Integrates the intelligence of the 'customer' throughout the entire manufacturing supply

Responds to the customer as a coordinated manufacturing

Apply Responds to the public as a enterprise, minimizing energy maximizing environmental

Dramatically intensified application of manufacturing intelligence using advanced data analytics, modeling and simulation to produce a fundamental transformation to transition/new product-based economics, flexible factories and demand-driven supply chain service enterprises

Data

Model

Practice Valuation Collective vs. Proprietary

Open Architecture

Data Valuation Collective vs. Proprietary

© SMLC, Inc. All Rights Reserved.

0

Global Manufacturing Health & Sustainability

Collective Innovation & Practice

Smart Enterprise Manufacturing

Smart Factory Manufacturing

Data & Device Integration & Orchestration

Secure Data Highways

Secure I, P and SaaS

The Business of Open Architecture Market, Valuation of Data & Innovation

Collective Wisdom

Converting Knowledge to Wisdom

Smart

Converting Information to Knowledge

Converting Data to Information

Conventional efficiency: 40-55% Cogeneration efficiencies: 75-85%

Smart Power Grids

- Delivery of electric power using two-way digital technology and automation with a goal to save
 - energy, reduce cost, and increase reliability.
- Power generated and distributed optimally for a wide range of conditions either centrally or at the
 - customer site, with variable energy pricing based on time of day and power supply/demand.
- Increased use of intermittent renewable power sources such as solar or wind energy but increased
 - need for energy storage.

Source: ERCOT Reliability/Resource Update 2006

Natural Gas

							-
							_
•							
15	16	17	18	19	20	21	22
					20		

Average Real-Time Pricing Patterns for 2008*

*Summer prices are for June - August. Depending on market conditions, prices can vary signficantly from this typical pattern. Savings cannot be guaranteed.

energy czars?) carbon footprint unit operation

- Stronger focus on energy use(corporate
- Increased energy efficiency and decreased
- Energy use measured and optimized for each

• Increased use of renewable energy(e.g., solar thermal and biomass) and energy storage • Interface with smart grids and energy storage

"FIRST, THE GOOD NEWS: WE'VE SHUT DOWN THE COAL-FIRED ELECTRIC POWER PLANT IN YOUR BACKYARD."

• Thermal energy storage (TES) systems heat or cool a storage medium and then use that hot or cold medium for heat transfer at a later point in time (steam, water, ice).

• Using thermal storage can reduce the size and initial cost of heating/cooling systems, lower energy costs, and reduce maintenance costs. If electricity costs more during the day than at night, thermal storage systems can reduce utility bills further.

• Incentive for thermal storage (NY Con Edison) for building or industrial users: \$2,600/KW vs. \$2,100/KW for battery storage

Energy flows in a combined heat and power system with thermal storage

UT Austin – A CHP plant (80+ % efficiency) with District Cooling Network

*TES – Thermal energy storage

Chilled water network

Economy of scale

- Centralized chillers
- Thermal energy storage

Opportunity for optimal chiller loading

District Cooling

Chilled water

• A chiller cools the water for air conditioning • Other energy consuming equipment in a chilling station are cooling towers and pumps • Chillers are different from one another in terms of efficiency and/or capacity. • Optimal chiller loading – best distribution of cooling load among chillers to minimize the power consumption • Thermal energy storage – to store chilled water which can be used later

Optimization Results

- -Chillers 1& 4 are most efficient, 3 is least efficient
- -Chiller 1 is variable frequency
- (a) Experience-based (operator-initiated) -No load forecasting

-Uses least efficient chiller (Chiller 3) (b) Load forecasting + optimization -Uses most efficient chillers (avoids Chiller 3) (c) Load forecasting + TES + optimization -Uses only two most efficient chillers

The Campus is a microgrid lacksquareand provides 100% of its electrical heating, and cooling loads UT Austin does not participate in open electricity market Opportunity for interconnection with the external grid economic benefit

Overview of the CHP Plant at UT Austin Hal C. Weaver Power Plant (80+ % efficiency)

۱
1

<u>Model assumptions</u> Steady state – Sampling period Δt of 1 hour • First principles models based on mass and energy balance • Constant model parameters, i.e., – Heat capacity C_p – Unit efficiency η – Lower heating value (*LHV*) Lumped parameter model lacksquare

Gas Heat steam Stean

# model parameters	#
2	
2	
	<pre># model parameters 2 1 1</pre>

a. There are two units of the same kind but only one unit operates at a time

Campus capacity vs. Campus demands

UT could sell

- 176 GWh to the grid in 70 2012
- 157 GWh to the grid in 50 2011
 - At an average electricity
 - price of \$0.02/kWh,
 - potential revenue of
 - \$ 3.53 million in 2012
 - \$ 3.14 million in 2011

Economic Analy

Interconnection with E – Case I

 \bullet

- Sell/buy pow
- $0 \le P_m(\mathbf{k})$
- $P_m(k) = 0$, stat – Case II
 - Only sell the e
- $P_I(\mathbf{k}) \leq P_m(\mathbf{k})$ – Case III
 - No power sales or purchases

 - $P_{I}(k) = P_{m}(k)$

*Electric Reliability Council of Texas

Economic Dispatch of a CHP Plant at UT Austin Key assumptions

ysis		
ERCOT*	٠	Typ
er to/from grid		– Tim
ndby mode		
extra power to grid		Natı \$3.9
es or nurchases		

• Optimal turbine and boiler loading

- e of Energy Market
- Day-ahead energy market
- e periods:
- 2/1/2011 ~ 11/30/2011
- $1/1/2012 \sim 12/31/2012$
- ural gas price: \$5.12/MMBtu in 2011 or 6/MMBtu in 2012
- 890,000 MMBTU/MSCF
- Lower Heating Value (LHV) of 20,313 Btu/lbm
- Natural gas density of 0.0438 lbm/SCF

UT Austin

Economic Dispatch of a CHP Plant at Problem formulation – objective function to be minimized

<u>Objective function</u>

where

- $F_{d,GT}$ is the fuel demand signal in a gas turbine
- θ_{IGV} is an inlet guide vane angle
- $W_{f, HRSG}$ is the duct burner fuel flow in a HRSG
- $W_{f, BR}$ is the fuel flow in a boiler
- $W_{S, EXT}$ is extraction steam flow
- P_I is the electric load
- W_s is superheated steam flow rate
- C_{elec} is the price of electricity
- C_{fuel} is the price of natural gas
- *COP* is coefficient of performance

 $\min_{\substack{F_{d,GT}^{i}, \theta_{IGV}^{i} \\ V_{W,TIAC}^{i}, W_{f,HRSG}^{i}}} \mathbf{J} = \sum_{i=1}^{N} \begin{bmatrix} -C_{elec}^{i} \left(P_{m,GT}^{i} + P_{m,ST}^{i} - P_{I,i} \right) + C_{elec}^{i} \Delta H \\ + C_{fuel} \left(W_{f,GT}^{i} + W_{f,HRSG}^{i} + W_{f}^{i} \right) \end{bmatrix}$

- $V_{W, TIAC}$ is the volumetric flow rate of cooling water

$$H^{i}_{TIAC} \frac{1.1}{COP} \left[\Delta t, \ N = \text{number of he} \\ T^{i}_{f, BR} \right] \quad \text{Solved using S} \\ \text{algorithm}$$

Decision variables

Power production Cooling load in the TIAC system Total fuel consumption

 $\Delta H^{i}_{TIAC} = f\left(\theta_{IGV}, V_{W, TIAC}, T_{a}, P_{a}, RH, T_{wi, TIAC}\right)$

ours SQP

<u>subject to</u>

 $F_{d,GT}^{-} \leq F_{d,GT}^{i} \leq F_{d,GT}^{+}$ for all i $\theta_{IGV}^- \leq \theta_{IGV}^i \leq \theta_{IGV}^+$ $V_{W, TIAC}^{-} \leq V_{W, TIAC} \leq V_{W}^{+}$ $W_{f, HRSG}^{-} \leq W_{f, HSRG}^{i} \leq V$ $W_{f,BR}^{-} \leq W_{f,BR}^{i} \leq W_{f,BR}^{+}$ $W^{demand}_{S, EXT} \leq W^{i}_{S, EXT} \leq W^{i}_{S, EXT}$ $T_{SH, HRSG} \leq \Delta T_{min, HRSG} \leq T_e$

Problem formulation – constraints

 $\min_{\substack{F_{d,GT}^{i}, \theta_{IGV}^{i}, \theta_{IGV}^{i} \\ \mathcal{M}_{W,TIAC}^{i}, W_{f,HRSG}^{i}}} \mathbf{J} = \sum_{i=1}^{N} \begin{bmatrix} -C_{elec}^{i} \left(P_{m,GT}^{i} + P_{m,ST}^{i} - P_{I,i} \right) + C_{elec}^{i} \Delta H_{TIAC}^{i} \\ + C_{fuel} \left(W_{f,GT}^{i} + W_{f,HRSG}^{i} + W_{f,BR}^{i} \right) \end{bmatrix}$

$$+$$

V, TIAC

$$W_{f, HRSG}^+$$

$$\leq I'_{e, HRSG}$$

- $W_{S, THR}$ is the throttle steam flow

$$\Delta H^{i}_{TIAC} \frac{1.1}{COP} \left[\Delta t, \ N = \text{number of hours} \\ W^{i}_{f, BR} \right] \Delta t, \ N = \text{number of hours} \\ \text{Solved using SQP algo} \\ T^{-}_{i} \leq T^{i}_{i} \qquad 0 \leq P^{i}_{m, GT} \quad 0 \leq P^{i}_{m, GT} \\ T^{i}_{e} \leq T^{ref}_{e} \qquad W^{i}_{SH, HRSG} \leq W^{+}_{SH, HR} \\ T^{i}_{f} \leq T^{ref}_{f} \qquad W^{i}_{SH, BR} \leq W^{+}_{SH, BR} \end{cases}$$

- $T_{SH, BR}$ is the temperature of steam produced from the boiler - T_{SH, HRSG} is the temperature of steam produced from the HRSG - $W_{SH, BR}$ is the steam flow from the boiler - $W_{SH, HSRG}$ is the steam flow from the HRSG

- T_f is the turbine's firing temperature - T_i is the air temperature at compressor inlet

orithm

IRSG

Year	Strategies	Scenarios	Operating costs (\$ million)	Net income (\$ million)	No inco (%
	Base case		16.0		_
2011		Case I Sell/buy power	12.6	3.42 (2.23 ^a)	21 (14.
(\$ 5.12 /MMBTU)	Optimal strategy	Case II Sell power	13.7	2.34	14
		Case III No power sales	15.7	0.27	1.
2012	Base case		13.4	_	_
		Case I Sell/buy power	12.0	1.4 (0.71 ^a)	10 (5.3
(\$ 3.96 /MMBTU)	strategy	Case II Sell power	12.4	1.0	7.
		Case III No power sales	12.9	0.5	3.

Summary

a. net income by selling power to the grid

• By coupling CSP with TES, we can better control when the electricity is produced

• CSP technologies concentrate sunlight to heat a fluid and run a generator

Solar Radiation (W/m²)

Time of Day

Supplemental Fossil Energy

Feedforward + Feedback (PID) temperature control Uses FF measurements of – Flow rate of stream 1 is manipulated variable

used for steam flow

Supplemental gas used when solar energy is not sufficient (stream 4)

Solar Energy Delivered to Load Supplemental Fuel Required (MWh) **Solar Share**

•Solar Share increased by 47% on sunny day, 3% on Cloudy day Power quality much better with storage •Dynamic optimization with weather forecasts can further improve solar share

Sunny Day:	Sunny Day:	Cloudy Day:	Cloud
System	System with	System	Syster
without	Storage	without	Sto
Storage		Storage	
16.48	16.82	8.40	8.
12.58	7.18	15.78	15
47.6%	70.1%	34.3%	35.

AIChE Journal

Brunet, Robert, Gonzalo Guillén-Gosálbez, and Laureano Jiménez. "Minimization of the nonrenewable energy consumption in bioethanol production processes using a solar-assisted steam generation system." AIChE Journal 60.2 (2014): 500-506.

Table 5. Economic and Energetic Summary of the Bioethanol Process

Item

Net Present Va Energy consum (Btu/gal) Total Capital Investment (Operating Cost Production Rat Unit Productio Cost (\$/kg) Unit Selling Pt Total revenues Area solar pan Natural gas co (kg/yr)

AIChE Journal

Brunet, Robert, Gonzalo Guillén-Gosálbez, and Laureano Jiménez. "Minimization of the nonrenewable energy consumption in bioethanol production processes using a solar-assisted steam generation system." *AIChE Journal* 60.2 (2014): 500-506.

	Design A	Design B	Design C
alue (\$) med	92,752,281 20,968	-328,817,003 12,838	75,610,887 13,903
(\$)	37,159,397	316,441,020	44,862,192
st (\$/yr)	63,021,995	79,893,062	62,606,124
te (kg/ yr)	119,171,463	119,171,463	119,171,463
n	0.67	1.12	0.68
rice (\$/kg)	0.69	0.69	0.69
s(\$)	81,826,000	81,826,000	81,826,000
nels (m ⁻)	0	5,430,794	71,053
nsumed	22,066,980	10,570,180	12,102,040

- Many opportunities to improve energy efficiency in the process industries by use of natural gas • Energy efficiency \equiv sustainability (carbon footprint) • Smart grids, cogeneration will change the power environment for manufacturing • Competitive electricity market is a good match for CHP
- Energy storage plus PSE tools will be critical technologies to deal with this dynamic environment

• Texas Instruments • UT Sustainability Fund • CHEMSTATIONS • UT Austin – Utilities and Energy Management

TEXAS INSTRUMENTS

Chemstations[™]

Utilities & Energy Management

